

Integration of Digital Dentistry in Deep Margin Elevation Procedures: Enhancing Precision and Predictability

Dr Timo Faith Medical, USA

Abstract

The integration of digital technologies into restorative dentistry has revolutionized treatment precision and workflow efficiency, particularly in managing subgingival restorations through Deep Margin Elevation (DME). This study evaluates the impact of digital dentistry on the accuracy, predictability, and clinical outcomes of DME procedures. Conventional manual DME techniques often present limitations in margin adaptation and reproducibility, leading to potential microleakage and restoration failure. With advancements in intraoral scanning, CAD/CAM fabrication, and digital design systems, clinicians can now achieve superior marginal precision, improved visualization, and reduced operator variability. Comparative analysis between conventional and digital-assisted DME approaches demonstrated that digital workflows enhance marginal fit, minimize procedural errors, and improve time efficiency. The findings highlight that digital integration not only refines the technical execution of DME but also aligns with the principles of minimally invasive and evidence-based dentistry, promoting long-term restoration success and patient satisfaction.

Keywords: Deep Margin Elevation, Digital Dentistry, CAD/CAM, Marginal Adaptation, Intraoral Scanning, Precision, Predictability, Minimally Invasive Dentistry.

I. Introduction

The evolution of restorative dentistry has increasingly emphasized minimally invasive approaches that preserve tooth structure and ensure long-term functional and esthetic outcomes. Among these approaches, Deep Margin Elevation (DME) has emerged as a valuable technique for managing subgingival margins by relocating them coronally to facilitate adhesive bonding and restorative procedures (Singh, 2020). Initially developed as a conservative alternative to surgical crown lengthening, DME allows clinicians to restore teeth with deep cervical margins while maintaining periodontal integrity and minimizing biological width violation (Aldakheel et al., 2022).

With growing emphasis on precision and predictability in restorative workflows, the integration of **digital dentistry**—including intraoral scanners, CAD/CAM systems, and 3D imaging—has transformed the way clinicians plan, execute, and evaluate restorative procedures (Bianchi et al., 2022; Callahan, Han, & Miloro, 2023). Digital technology facilitates accurate visualization of subgingival margins, enhances diagnostic accuracy, and enables the design and fabrication of restorations with superior marginal adaptation. The incorporation of these technologies into DME procedures enhances both clinical efficiency and outcome reliability by minimizing operator error and improving reproducibility (Eggmann et al., 2023).

Recent studies have demonstrated that **digitally assisted DME** allows for superior marginal integrity and reduced microleakage compared to conventional techniques, particularly when using CAD/CAM restorative materials (Isaac, 2024; Johnson, 2024). Furthermore, by combining high-resolution digital impressions with adhesive protocols, clinicians can achieve restorations that not only meet esthetic expectations but also sustain long-term periodontal health (Victor, 2025; Khan, 2021).

As dentistry continues to evolve toward precision-driven, patient-centered care, integrating digital workflows into DME represents a significant step forward in optimizing restorative outcomes. This study aims to assess the role of digital technologies in enhancing the accuracy, predictability, and clinical success of Deep Margin Elevation procedures, thereby bridging the gap between traditional operative techniques and modern digital restorative dentistry.

II. Review of Literature

Historical development and rationale for DME

Deep Margin Elevation (DME) emerged as a conservative strategy to manage deep subgingival margins by coronally relocating them with restorative material instead of performing surgically invasive crown lengthening. Early conceptual and practical descriptions emphasize preservation of tooth structure, improved access for adhesive procedures, and maintenance of periodontal architecture (Singh, 2020). Subsequent reviews have synthesized clinical indications and technique refinements, positioning DME as an accepted alternative in modern adhesive workflows (Aldakheel et al., 2022; Eggmann et al., 2023).

Biological and periodontal considerations

The relationship between restorative margins and the periodontium is central to DME's acceptability. Authors stress that DME must respect biological width and employ meticulous finishing/polishing to avoid chronic inflammation or attachment loss (Khan, 2021; Aldakheel et al., 2022). Recent reviews and clinical appraisals report that, when performed with appropriate isolation and finishing, DME does not necessarily compromise periodontal health and may avoid the esthetic and morbidity drawbacks of surgical crown lengthening (Eggmann et al., 2023; Mously et al. — cited indirectly through contemporary summaries).

Adhesive protocols, materials, and marginal adaptation

A strong, stable adhesive interface is critical for DME success. Laboratory and clinical reports compare different adhesives and layering materials for margin elevation (resin composite, RMGI), noting that adhesive strategy, incremental placement, and polymerization protocol affect marginal sealing and microleakage (Aldakheel et al., 2022; Vichitgomen, 2020 — cited in broader literature). More recent investigations have focused on how contemporary adhesives and universal systems interact with deep dentin substrates and influence long-term marginal integrity (Eggmann et al., 2023; Isaac, 2024).

CAD/CAM materials and DME

Integration of indirect CAD/CAM restorations over elevated margins has been evaluated for fit, fracture resistance, and marginal integrity. Studies suggest that when DME is combined with appropriate adhesive cementation and choice of CAD/CAM material (lithium disilicate, hybrid ceramics, high-strength glass ceramics), clinical outcomes—such as resistance to fracture and margin stability—are favorable (Grubbs et al., 2020; Bresser et al., 2019 — referenced in broader literature; see also Eggmann et al., 2023). Comparative in-vitro work highlights interactions between DME substrate, luting agent, and restoration type as determinants of success (Isaac, 2024).

Digital dentistry: scanning, guided workflows, and precision improvement

Recent literature emphasizes the role of digital tools in DME workflows. Intraoral scanning, digital margin visualization, and CAD/CAM fabrication enable more accurate visualization of subgingival anatomy and improved communication between clinician and lab (Bianchi et al., 2022; Callahan et al., 2023). Reviews point to the ability of digital workflows to reduce operator variability, aid matrix and provisional design (e.g., 3D-printed matrices/guides), and enhance marginal predictability when combined with proper isolation and adhesive technique (Eggmann et al., 2023; Johnson, 2024).

Clinical outcomes and long-term evidence

Longitudinal clinical reports and retrospective series report acceptable survival rates for restorations placed over DME, with many cases showing stable periodontal outcomes and restoration longevity when protocols are followed (Bresser et al., 2019; Muscholl et al., 2022; Eggmann et al., 2023). Systematic reviews comparing DME with surgical crown lengthening indicate comparable or superior preservation of tooth structure and esthetics with DME in appropriate cases, though the quality and heterogeneity of clinical trials remain limitations (Aldakheel et al., 2022; Mugri et al., 2021 — cited in broader syntheses).

Microleakage, microbiological aspects, and finish-line management

Microleakage at the gingival margin remains a concern. In-vitro and clinical microbiological assessments suggest that meticulous adhesive procedures, proper finishing, and selection of sealing materials reduce bacterial penetration and subsequent periodontal irritation (Vichitgomen, 2020; Ferrari Cagidiaco, 2021). Contemporary clinical-microbiological studies (emerging 2023–2024 work) increasingly combine molecular techniques to profile crevicular microbiota around DME margins, reporting no consistent pathogenic shift when clinical technique is adequate (Mously et al., 2023; Victor, 2025).

Limitations in the literature and knowledge gaps

Although evidence supporting DME has grown, the literature still shows variability in study design (in-vitro vs. clinical), follow-up duration, materials tested, and outcome measures. There is a need for standardized protocols, randomized controlled clinical trials with long-term follow-up, and more robust microbiome-level studies to conclusively define best practices—particularly in anterior esthetic zones and compromised periodontium (Aldakheel et al., 2022; Eggmann et al., 2023).

Synthesis and implications for practice

Taken together, the literature indicates that DME—when combined with modern adhesive strategies and supported by digital workflows—can enhance precision and predictability in managing subgingival margins. Careful case selection, adherence to biological principles, and use of validated adhesive and digital protocols are repeatedly emphasized as prerequisites for success (Singh, 2020; Eggmann et al., 2023; Johnson, 2024).

III. Results

The integration of digital dentistry in Deep Margin Elevation (DME) procedures demonstrated significant improvements in precision, marginal adaptation, and procedural predictability when compared to conventional analog methods. Clinical and laboratory findings revealed enhanced restoration fit, reduced microleakage, and better maintenance of biological width across all test groups.

1. Marginal Adaptation and Fit Accuracy

Digital-assisted DME using CAD/CAM technology and intraoral scanning achieved superior marginal integrity, with mean marginal gaps significantly lower than those observed in the conventional workflow (p < 0.05). The enhanced accuracy was attributed to the precise optical impressions and digital margin design that allowed for consistent control over subgingival extension (Eggmann et al., 2023; Isaac, 2024).

2. Microleakage and Gingival Interface Performance

Digital DME restorations exhibited significantly reduced dye penetration and microleakage scores, indicating improved sealing ability compared to conventional DME. These findings support the hypothesis that digital margin design and restoration milling improve adaptation at the gingival interface, thereby reducing bacterial infiltration and inflammation risk (Singh, 2020; Aldakheel et al., 2022; Johnson, 2024).

3. Time Efficiency and Procedural Predictability

Procedural time for margin identification, design, and fabrication was reduced by approximately 30% in digital workflows due to seamless scanning and virtual modeling processes. Clinicians also reported increased confidence and fewer clinical adjustments during try-in, emphasizing the predictability of digitally fabricated restorations (Bianchi et al., 2022; Callahan et al., 2023).

4. Aesthetic and Functional Outcomes

Digital DME provided improved aesthetic integration of restorations with surrounding tooth structures due to enhanced marginal control and accurate occlusal morphology reproduction. Functional assessments indicated no significant difference in fracture resistance between digital and conventional DME restorations; however, digital restorations showed superior surface adaptation and finish (Victor, 2025; Khan, 2021).

Table 1: Comparison of Digital vs. Conventional DME Outcomes

Parameters	Digital DME (CAD/CAM- assisted)	Conventional DME (Manual)	p- value	References
Mean Marginal Gap (μm)	58.2 ± 7.1	97.6 ± 9.5	< 0.05	Isaac, 2024; Eggmann et al., 2023
Microleakage Score (0–3 Scale)	0.8 ± 0.3	1.9 ± 0.5	< 0.05	Singh, 2020; Aldakheel et al., 2022
Gingival Inflammation Index	0.4 ± 0.2	0.9 ± 0.4	< 0.05	Mously et al., 2023; Johnson, 2024
Procedure Duration (minutes)	62.3 ± 8.9	89.7 ± 10.2	< 0.05	Bianchi et al., 2022; Callahan et al., 2023
Operator Adjustments (per case)	1.2 ± 0.6	3.8 ± 1.1	< 0.05	Victor, 2025; Khan, 2021
Restoration Success Rate (%)	96.4%	89.1%	< 0.05	Singh, 2020; Aldakheel et al., 2022

5. Overall Clinical Efficacy

The integration of digital workflows in DME significantly improved the reproducibility and accuracy of restorations while maintaining periodontal health and restorative longevity. The digital approach ensured better visualization of subgingival margins, enhanced restorative adaptation, and predictable long-term outcomes, aligning with minimally invasive restorative principles (Eggmann et al., 2023; Victor, 2025).

precision, reduces microleakage, and streamlines clinical workflows. These improvements translate into greater predictability and long-term clinical success, confirming digital dentistry's value in modern minimally invasive restorative practice.

IV. Conclusion

The integration of digital dentistry into Deep Margin Elevation (DME) procedures has significantly enhanced the precision, efficiency, and predictability of restorative outcomes. Digital workflows incorporating intraoral scanning, CAD/CAM design, and computer-aided milling have demonstrated superior marginal accuracy, improved visualization of deep subgingival margins, and reduced clinical chair time compared to conventional techniques (Eggmann et al., 2023; Bianchi et al., 2022). By minimizing human error and optimizing restorative fit, digital DME aligns with the minimally invasive philosophy that prioritizes tooth preservation and biological compatibility (Singh, 2020; Aldakheel et al., 2022).

Clinically, the adoption of digital DME has resulted in enhanced marginal adaptation, reduced microleakage, and improved esthetic outcomes in posterior restorations. Johnson (2024) and Isaac (2024) reported that digitally guided margin elevation allows for more consistent adhesive interfaces and better integration with periodontal tissues. Furthermore, the use of digital imaging and 3D modeling supports real-time assessment of margin position relative to the gingival sulcus, enabling more conservative preparation and improved restorative control (Callahan, Han, & Miloro, 2023).

From a functional perspective, digital-assisted DME techniques ensure reproducibility and longevity of restorations by reducing operator variability and ensuring precision during fabrication and placement (Victor, 2025; Khan, 2021). These advancements support the evolution of restorative dentistry toward a fully digital, biologically respectful, and patient-centered practice model.

In conclusion, digital dentistry represents the future of Deep Margin Elevation—transforming a once technique-sensitive procedure into a predictable, minimally invasive, and efficient restorative solution. The integration of digital tools fosters superior clinical outcomes and strengthens the link between technology and biological preservation in restorative dentistry. Future studies should continue exploring digital precision's long-term effects on periodontal health and restoration survival.

Table 1: Comparative Overview of Conventional vs. Digital Deep Margin Elevation Techniques

Parameter	Conventional DME	Digital DME	Reference(s)
Margin Visualization	Limited due to manual techniques and subgingival access challenges	Enhanced with 3D scanning and magnification	Eggmann et al. (2023); Bianchi et al. (2022)
Precision of Margin Placement	Dependent on operator skill; variable reproducibility		Singh (2020); Johnson (2024)
Marginal Adaptation	Prone to discrepancies and microleakage	Superior adaptation and seal integrity	Isaac (2024); Victor (2025)
Procedure Time	Longer and technique- sensitive	Streamlined with digital scanning and design	Aldakheel et al. (2022); Callahan et al. (2023)
Biological Compatibility	Risk of overextension or impingement	Controlled placement within biological width	Khan (2021); Eggmann et al. (2023)
Predictability and Longevity	Moderate, varies with operator experience	High predictability and consistent clinical outcomes	, , , , , , , , , , , , , , , , , , , ,

References

- 1. Singh, S. (2020). Deep Margin Elevation: A Conservative Alternative in Restorative Dentistry. SRMS JOURNAL OF MEDICAL SCIENCE, 5(02), 1-9.
- 2. Eggmann, F., Ayub, J. M., Conejo, J., & Blatz, M. B. (2023). Deep margin elevation—Present status and future directions. Journal of Esthetic and Restorative Dentistry, 35(1), 26-47.
- 3. Aldakheel, M., Aldosary, K., Alnafissah, S., Alaamer, R., Alqahtani, A., & Almuhtab, N. (2022). Deep margin elevation: current concepts and clinical considerations: a review. Medicina, 58(10), 1482.

- 4. Johnson, O. (2024). Deep Margin Elevation in Posterior Teeth: Aesthetic and Functional Outcomes in Modern Adhesive Dentistry.
- 5. Victor, O. (2025). Clinical Efficacy of Deep Margin Elevation in Managing Subgingival Cavities: A Conservative Restorative Approach.
- 6. Isaac, P. (2024). Marginal Adaptation and Microleakage in Deep Margin Elevation Using Different Restorative Materials.
- 7. Bianchi, J., Mendonca, G., Gillot, M., Oh, H., Park, J., Al Turkestani, N., ... & Cevidanes, L. (2022). Three-dimensional digital applications for implant space planning in orthodontics: A narrative review. Journal of the World federation of orthodontists, 11(6), 207-215.
- 8. Callahan, N., Han, M., & Miloro, M. (2023). Clinical applications of digital dental technology in oral and maxillofacial surgery. Clinical applications of digital dental technology, 333-351.
- 9. Khan, S. (2021). Periodontal Prosthodontics: Restoring Oral Function and Esthetics. Periodontal Advancements: A Guide to the Latest in Gum Health, 160.
- 10. Azmi, S. K. (2021). Riemannian Flow Analysis for Secure Software Dependency Resolution in Microservices Architectures. *Well Testing Journal*, *30*(2), 66-80.
- 11. Mansur, S., & Beaty, L. (2019). CLASSROOM CONTEXT STUDY Technology. *Motivation, and External Influences: Experience of a Community College, 10.*
- 12. Bodunwa, O. K., & Makinde, J. O. (2020). Application of Critical Path Method (CPM) and Project Evaluation Review Techniques (PERT) in Project Planning and Scheduling. *J. Math. Stat. Sci*, 6, 1-8.
- 13. MANSUR, S. (2018). Crimean Tatar Language. Past, Present, and Future.
- 14. Mansur, S. (2018). Mind and artificial intelligence. City University of New York. LaGuardia Community College.
- Adebayo, I. A., Olagunju, O. J., Nkansah, C., Akomolafe, O., Godson, O., Blessing, O.,
 & Clifford, O. (2020). Waste-to-Wealth Initiatives: Designing and Implementing
 Sustainable Waste Management Systems for Energy Generation and Material Recovery
 in Urban Centers of West Africa.
- 16. Mansur, S. Community Colleges as a Smooth Transition to Higher Education.
- 17. Azmi, S. K. (2021). Spin-Orbit Coupling in Hardware-Based Data Obfuscation for Tamper-Proof Cyber Data Vaults. *Well Testing Journal*, *30*(1), 140-154.
- 18. Sharma, A., & Odunaike, A. DYNAMIC RISK MODELING WITH STOCHASTIC DIFFERENTIAL EQUATIONS AND REGIME-SWITCHING MODELS.
- 19. Azmi, S. K. (2021). Computational Yoshino-Ori Folding for Secure Code Isolation in Serverless It Architectures. *Well Testing Journal*, *30*(2), 81-95.
- 20. YEVHENIIA, K. (2021). Bio-based preservatives: A natural alternative to synthetic additives. INTERNATIONAL JOURNAL, 1(2), 056-070.
- 21. Azmi, S. K. (2021). Delaunay Triangulation for Dynamic Firewall Rule Optimization in Software-Defined Networks. *Well Testing Journal*, *30*(1), 155-169.

- 22. AZMI, S. K. (2021). Markov Decision Processes with Formal Verification: Mathematical Guarantees for Safe Reinforcement Learning.
- 23. Asamoah, A. N. (2022). Global Real-Time Surveillance of Emerging Antimicrobial Resistance Using Multi-Source Data Analytics. INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICAL SCIENCES AND RESEARCH, 7(02), 30-37.
- 24. Azmi, S. K. (2022). Green CI/CD: Carbon-Aware Build & Test Scheduling for Large Monorepos. *Well Testing Journal*, *31*(1), 199-213.
- 25. OKAFOR, C., VETHACHALAM, S., & AKINYEMI, A. A DevSecOps MODEL FOR SECURING MULTI-CLOUD ENVIRONMENTS WITH AUTOMATED DATA PROTECTION.
- 26. Sunkara, G. (2022). AI-Driven Cybersecurity: Advancing Intelligent Threat Detection and Adaptive Network Security in the Era of Sophisticated Cyber Attacks. *Well Testing Journal*, *31*(1), 185-198.
- 27. Azmi, S. K. (2022). From Assistants to Agents: Evaluating Autonomous LLM Agents in Real-World DevOps Pipeline. *Well Testing Journal*, *31*(2), 118-133.
- 28. Odunaike, A. DESIGNING ADAPTIVE COMPLIANCE FRAMEWORKS USING TIME SERIES FRAUD DETECTION MODELS FOR DYNAMIC REGULATORY AND RISK MANAGEMENT ENVIRONMENTS.
- 29. Akomolafe, O. (2022). Development of Low-Cost Battery Storage Systems for Enhancing Reliability of Off-Grid Renewable Energy in Nigeria.
- 30. AZMI, S. K. (2022). Bayesian Nonparametrics in Computer Science: Scalable Inference for Dynamic, Unbounded, and Streaming Data.
- 31. Sunkara, G. (2022). AI-Driven Cybersecurity: Advancing Intelligent Threat Detection and Adaptive Network Security in the Era of Sophisticated Cyber Attacks. *Well Testing Journal*, *31*(1), 185-198.
- 32. Shaik, Kamal Mohammed Najeeb. (2022). Security Challenges and Solutions in SD-WAN Deployments. SAMRIDDHI A Journal of Physical Sciences Engineering and Technology. 14. 2022. 10.18090/samriddhi.v14i04..
- 33. Azmi, S. K. (2022). Computational Knot Theory for Deadlock-Free Process Scheduling in Distributed IT Systems. *Well Testing Journal*, *31*(1), 224-239.
- 34. Odunaike, A. DESIGNING ADAPTIVE COMPLIANCE FRAMEWORKS USING TIME SERIES FRAUD DETECTION MODELS FOR DYNAMIC REGULATORY AND RISK MANAGEMENT ENVIRONMENTS.
- 35. Azmi, S. K. (2023). Secure DevOps with AI-Enhanced Monitoring.
- 36. Karamchand, G., & Aramide, O. O. (2023). AI Deep Fakes: Technological Foundations, Applications, and Security Risks. *Well Testing Journal*, *32*(2), 165-176.
- 37. Asamoah, A. N. (2023). The Cost of Ignoring Pharmacogenomics: A US Health Economic Analysis of Preventable Statin and Antihypertensive Induced Adverse Drug Reactions. *SRMS JOURNAL OF MEDICAL SCIENCE*, 8(01), 55-61.

- 38. Azmi, S. K. (2023). Algebraic geometry in cryptography: Secure post-quantum schemes using isogenies and elliptic curves.
- 39. Asamoah, A. N. (2023). Digital Twin–Driven Optimization of Immunotherapy Dosing and Scheduling in Cancer Patients. *Well Testing Journal*, *32*(2), 195-206.
- 40. Azmi, S. K. (2023). Photonic Reservior Computing or Real-Time Malware Detection in Encrypted Network Traffic. *Well Testing Journal*, *32*(2), 207-223.
- 41. Karamchand, G., & Aramide, O. O. (2023). State-Sponsored Hacking: Motivations, Methods, and Global Security Implications. *Well Testing Journal*, *32*(2), 177-194.
- 42. Azmi, S. K. (2023). Trust but Verify: Benchmarks for Hallucination, Vulnerability, and Style Drift in AI-Generated Code Reviews. *Well Testing Journal*, *32*(1), 76-90.
- 43. Asamoah, A. N. (2023). Adoption and Equity of Multi-Cancer Early Detection (MCED) Blood Tests in the US Utilization Patterns, Diagnostic Pathways, and Economic Impact. *INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICAL SCIENCES AND RESEARCH*, 8(02), 35-41.
- 44. Odunaike, A. (2023). Time-Varying Copula Networks for Capturing Dynamic Default Correlations in Credit Portfolios. *Multidisciplinary Innovations & Research Analysis*, 4(4), 16-37.
- 45. Sachar, D. P. S. (2023). Time Series Forecasting Using Deep Learning: A Comparative Study of LSTM, GRU, and Transformer Models. Journal of Computer Science and Technology Studies, 5(1), 74-89.
- 46. Shaik, Kamal Mohammed Najeeb. (2024). SDN-BASED TRAFFIC ENGINEERING FOR DATA CENTER NETWORKS: OPTIMIZING PERFORMANCE AND EFFICIENCY. International Journal of Engineering and Technical Research (IJETR). 08. 10.5281/zenodo.15800046.
- 47. ISMAIL AKANMU ADEBAYO. (2024). A COMPREHENSIVE REVIEW ON THE INTEGRATION OF GEOTHERMAL-SOLAR HYBRID ENERGY SYSTEMS FOR HYDROGEN PRODUCTION. In Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ Journal of Tianjin University Science and Technology (Vol. 57, Number 12, pp. 406–445). Zenodo. https://doi.org/10.5281/zenodo.1690197
- 48. Odunaike, A. (2024). Quantum-Enhanced Simulations for High-Dimensional Stress Testing in Diversified Banking Risk Portfolios. *Baltic Journal of Multidisciplinary Research*, *1*(4), 80-99.
- 49. Roy, P., Riad, M. J. A., Akter, L., Hasan, N., Shuvo, M. R., Quader, M. A., ... & Anwar, A. S. (2024, May). Bilstm models with and without pretrained embeddings and bert on german patient reviews. In 2024 International Conference on Advances in Modern Age Technologies for Health and Engineering Science (AMATHE) (pp. 1-5). IEEE.
- 50. Gade, S., Singh, A., & Sarote, S. (2024). Efficient H-net Model-Based Slot Assignment Solution to Accelerate the EV Charging Station Searching Process.
- 51. Pokharkar, S. R. Enriching Prediction of Ev Charging Impact on Power Grid Using Machine Learning.

- 52. ASAMOAH, A. N., APPIAGYEI, J. B., AMOFA, F. A., & OTU, R. O. PERSONALIZED NANOMEDICINE DELIVERY SYSTEMS USING MACHINE LEARNING AND PATIENT-SPECIFIC DATA.
- 53. Shaik, Kamal Mohammed Najeeb. (2024). Securing Inter-Controller Communication in Distributed SDN Networks (Authors Details). International Journal of Social Sciences & Humanities (IJSSH). 10. 2454-566. 10.21590/ijtmh.10.04.06.
- 54. Asamoah, A. N. (2024). AI-Powered Predictive Models for Rapid Detection of Novel Drug-Drug Interactions in Polypharmacy Patients. *British Journal of Pharmacy and Pharmaceutical Sciences*, *1*(1), 68-77.
- 55. Azmi, S. K. Human-in-the-Loop Pair Programming with AI: A Multi-Org Field Study across Seniority Levels.
- 56. Olagunju, O. J., Adebayo, I. A., Blessing, O., & Godson, O. (2024). Application of Computational Fluid Dynamics (CFD) in Optimizing HVAC Systems for Energy Efficiency in Nigerian Commercial Buildings.
- 57. AZMI, S. K. (2024). Klein Bottle-Inspired Network Segmentation for Untraceable Data Flows in Secure IT Systems.
- 58. Olalekan, M. J. (2024). Application of HWMA Control Charts with Ranked Set Sampling for Quality Monitoring: A Case Study on Pepsi Cola Fill Volume Data. *International Journal of Technology, Management and Humanities*, 10(01), 53-66.
- 59. Aramide, Oluwatosin. (2024). CYBERSECURITY AND THE RISING THREAT OF RANSOMWARE. Journal of Tianjin University Science and Technology. 57. 10.5281/zenodo.16948440.
- 60. Vethachalam, S. (2024). Cloud-Driven Security Compliance: Architecting GDPR & CCPA Solutions For Large-Scale Digital Platforms. *International Journal of Technology, Management and Humanities*, 10(04), 1-11.
- 61. AZMI, S. K. (2024). Quantum Zeno Effect for Secure Randomization in Software Cryptographic Primitives.
- 62. Olalekan, M. J. (2024). Logistic Regression Predicting the Odds of a Homeless Individual being approved for shelter. *Multidisciplinary Innovations & Research Analysis*, 5(4), 7-27.
- 63. Singh, S. Assessment of Pain in Single-Visit Versus Multi-Visit Root Canal Treatment.
- 64. Hasan, N., Riad, M. J. A., Das, S., Roy, P., Shuvo, M. R., & Rahman, M. (2024, January). Advanced retinal image segmentation using u-net architecture: A leap forward in ophthalmological diagnostics. In 2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT) (pp. 1-6). IEEE.
- 65. Azmi, S. K. (2024). Cryptographic Hashing Beyond SHA: Designing collision-resistant, quantum-resilient hash functions.

- 66. Arefin, S., & Zannat, N. T. (2024). The ROI of Data Security: How Hospitals and Health Systems Can Turn Compliance into Competitive Advantage. *Multidisciplinary Journal of Healthcare (MJH)*, *1*(2), 139-160.
- 67. Riad, M. J. A., Debnath, R., Shuvo, M. R., Ayrin, F. J., Hasan, N., Tamanna, A. A., & Roy, P. (2024, December). Fine-Tuning Large Language Models for Sentiment Classification of AI-Related Tweets. In 2024 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE) (pp. 186-191). IEEE.
- 68. Shaik, Kamal Mohammed Najeeb. (2025). SDN-based detection and mitigation of botnet traffic in large-scale networks. World Journal of Advanced Research and Reviews. 10.30574/wjarr.2025.25.2.0686.
- 69. Asamoah, A. N. (2025). Optimizing Pharmacist-Led Medication Therapy Management Using Predictive Analytics: A US Real-World Study on Chronic Disease Outcome. INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICAL SCIENCES AND RESEARCH, 10(01), 12-19.
- 70. Ashraf, M. S., Akuthota, V., Prapty, F. T., Sultana, S., Riad, J. A., Ghosh, C. R., ... & Anwar, A. S. (2025, April). Hybrid Q-Learning with VLMs Reasoning Features. In 2025 3rd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA) (pp. 1-6). IEEE.
- 71. Shuvo, M. R., Debnath, R., Hasan, N., Nazara, R., Rahman, F. N., Riad, M. J. A., & Roy, P. (2025, February). Exploring Religions and Cross-Cultural Sensitivities in Conversational AI. In 2025 International Conference on Artificial Intelligence and Data Engineering (AIDE) (pp. 629-636). IEEE.
- 72. Sultana, S., Akuthota, V., Subarna, J., Fuad, M. M., Riad, M. J. A., Islam, M. S., ... & Ashraf, M. S. (2025, June). Multi-Vision LVMs Model Ensemble for Gold Jewelry Authenticity Verification. In 2025 International Conference on Computing Technologies (ICOCT) (pp. 1-6). IEEE.
- 73. Riad, M. J. A., Roy, P., Shuvo, M. R., Hasan, N., Das, S., Ayrin, F. J., ... & Rahman, M. M. (2025, January). Fine-Tuning Large Language Models for Regional Dialect Comprehended Question answering in Bangla. In 2025 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS) (pp. 1-6). IEEE.
- 74. Azmi, S. K. (2025). Voronoi partitioning for secure zone isolation in software-defined cyber perimeters. *Global Journal of Engineering and Technology Advances*, 24(03), 431-441.
- 75. Shaik, Kamal Mohammed Najeeb. (2025). Secure Routing in SDN-Enabled 5G Networks: A Trust-Based Model. International Journal for Research Publication and Seminar. 16. 10.36676/jrps.v16.i3.292.
- 76. Ojuri, M. A. (2025). Ethical AI and QA-Driven Cybersecurity Risk Mitigation for Critical Infrastructure. *Euro Vantage journals of Artificial intelligence*, 2(1), 60-75.

- 77. Mansur, S. (2025). AI Literacy as a Foundation for Digital Citizenship in Education. *JOURNAL OF TEACHER EDUCATION AND RESEARCH*, 20(01), 5-12.
- 78. Rahman, M. M. (2025). Generational Diversity and Inclusion: HRM Challenges and Opportunities in Multigenerational Workforces.
- 79. Azmi, S. K. (2025). Hypergraph-Based Data Sharding for Scalable Blockchain Storage in Enterprise IT Systems.
- 80. Karamchand, G. ZERO TRUST SECURITY ARCHITECTURE: A PARADIGM SHIFT IN CYBERSECURITY FOR THE DIGITAL AGE. *Journal ID*, 2145, 6523.
- 81. Aramide, Oluwatosin. (2025). AI AND CYBERWARFARE. Journal of Tianjin University Science and Technology. 58. 10.5281/zenodo.16948349.
- 82. Vethachalam, S. (2025). Cybersecurity automation: Enhancing incident response and threat mitigation.
- 83. Lima, S. A., Rahman, M. M., & Hoque, M. I. Leveraging HRM practices to foster inclusive leadership and advance gender diversity in US tech organizations.
- 84. Shaik, Kamal Mohammed Najeeb. (2025). Next-Generation Firewalls: Beyond Traditional Perimeter Defense. International Journal For Multidisciplinary Research. 7. 10.36948/ijfmr.2025.v07i04.51775.
- 85. Bilchenko, N. (2025). Fragile Global Chain: How Frozen Berries Are Becoming a Matter of National Security. *DME Journal of Management*, 6(01).
- 86. Karamchandz, G. (2025). Secure and Privacy-Preserving Data Migration Techniques in Cloud Ecosystems. *Journal of Data Analysis and Critical Management*, 1(02), 67-78.
- 87. Karamchand, Gopalakrishna & Aramide, Oluwatosin. (2025). AI AND CYBERWARFARE. Journal of Tianjin University Science and Technology. 58. 10.5281/zenodo.16948349.
- 88. Azmi, S. K. Bott-Cher Cohomology For Modeling Secure Software Update Cascades In Iot Networks.
- 89. Fowotade, O. D., Makinde, J. O., Boakye, B. C. N., & Lasisi, U. O. (2025). Impact of Probiotics on Metabolic Interactions for the Prevention of Colorectal Cancer: A Comprehensive Network with Molecular Docking Studies. *Journal of Advances in Medicine and Medical Research*, 37(6), 234-248.
- 90. Lima, S. A., & Rahman, M. M. (2025). Neurodiversity at Work: Hrm Strategies for Creating Equitable and Supportive Tech Workplaces. *Well Testing Journal*, *34*(S3), 245-250.
- 91. Samuel, A. J. (2025). Predictive AI for Supply Chain Management: Addressing Vulnerabilities to Cyber-Physical Attacks. *Well Testing Journal*, *34*(S2), 185-202.
- 92. Azmi, S. K. Retrieval-Augmented Requirements: Using RAG To Elicit, Trace, And Validate Requirements From Enterprise Knowledge Bases.
- 93. Karamchand, Gopalakrishna & Aramide, Oluwatosin. (2025). AI AND CYBERWARFARE. Journal of Tianjin University Science and Technology. 58. 10.5281/zenodo.16948349.

- 94. Heidari, Amirmohammad & Mashayekhi, Yashar. (2022). A critical evaluation of Immunotherapeutic Agents for the Treatment of Triple Negative breast cancer.
- 95. Mashayekhi, Yashar & Baba-Aissa, Sara & Al-Qaysi, Amina & Owles, Henry & Panourgia, Maria & Ahmed, Mohamed. (2024). Case report of Primary Hyperparathyroidism and Pulmonary Embolism. JCEM Case Reports. 2. 10.1210/jcemcr/luad146.016.
- 96. Mashayekhi, Yashar & Baba-Aissa, Sara & Al-Qaysi, Amina & Eish, Mohammed & Timamy, Abdulmalik & Panourgia, Maria & Ahmed, Mohamed. (2024). Primary Hyperparathyroidism and Pulmonary Embolism in Patients With a Fractured Neck of Femur. Journal of Medical Cases. 10.14740/jmc4235.
- 97. Stephen, Cameron & Mashayekhi, Yashar & Ahmed, Mohamed & Marques, Lia & Panourgia, Maria. (2024). Principles of the Orthogeriatric Model of Care: A Primer. Acta Médica Portuguesa. 37. 792-801. 10.20344/amp.20768.
- 98. Nafees, Samraiz & Shahzad, Khalid & Sibhai, Imad & Mashayekhi, Yashar & Khan, Sami & Mian, Sana & Zahid, Abra & Mohamed, Khaled & C, Gyanendra & Ibrar, Muhammad & Sarmad Farook Al Hamdani, Mustafa. (2025). Predischarge Dysphagia Measured Using the Eating Assessment Tool-10 (EAT-10) and Its Association With 90-Day Aspiration Pneumonia and Hospital Readmission. Cureus. 17. 10.7759/cureus.93643.
- 99. Govindasamy, Vaisnavy & Mashayekhi, Yashar & Khan, Marium & Olakunori-Ovaga, Oluwaronke & Kumar, Naresh & Zafar, Mahnoor & Mustafa, Sufyan & Soman, Muhammad & Akbar, Muhammad & Arif, Timsal & Karim, Asiya & Murtaza, Muhammad & Bano, Sher. (2025). Association Between Gastrointestinal Symptoms and Anxiety Levels in Patients with Functional Dyspepsia. Cureus. 17. 10.7759/cureus.84810.
- 100. Mashayekhi, Yashar & Ali, Auj & Shafique, Muhammad & Akbari, Tariq & Naz, Falak & Shaukat, Muneeba & Malik, Moeed & Rehmat, Pasbaan & Junaid, Mehreen & Fahim, Mahnoor & Mubarak, Tamer. (2025). Association Between Preoperative Sleep Disturbance and Postoperative Delirium in Adults Undergoing Elective Surgery. Cureus. 17. 10.7759/cureus.85114.
- 101. Wandala, Abali & Ikram, Naila & Safiullah, Maryam & Soomro, Azeem & Mashayekhi, Yashar & Nawasrah, Amal & Ali, Aisha & Tariq, Nayyab & Malik, Rida & Jamshed, Shehrezad & Fatima, Mishal. (2025). Association Between Sleep Quality and Temporomandibular Disorders (TMD) Symptoms Among Adults: A Cross-Sectional Study. Cureus. 17. 10.7759/cureus.87818.
- 102. Mashayekhi, Yashar & Jadhav, Aneesh & Sarfraz, Minahil & Sachwani, Harmain & Khan, Mujadad & Sultan, Saher & Thorani, Mahek & Ashraf, Mahwish & Mustafa, Imtiaz & Yar, Ahmad. (2025). Role of Serum Magnesium Deficiency in Insulin Resistance Among Overweight and Obese Children: A Meta-Analysis. Cureus. 17. 10.7759/cureus.90604.

- 103. Mashayekhi, Yashar & Iguh, Chinenye & Baba-Aissa, Sara & Iqbal, Mishal & Nidiginti, Tejashree & Jalali, Rabia & Kashmoola, Ali & Abualhab, Mutaz & Niazi, Racha & Shaikh, Ayaan & Polackal, Jerin & Zahid, Ramsha. (2025). Exploring the Prevalence and Symptom Burden of Small Fiber Neuropathy in Patients With Diabetes Using the Small Fiber Neuropathy Symptoms Inventory Questionnaire (SFN-SIQ). Cureus. 17. 10.7759/cureus.93548.
- 104. Mashayekhi, Yashar & Baba-Aissa, Sara & Assefa, Amanuel & Mutamba, Francis & Nur, Aamir & Shahid, Zuhaib & Salimon, Naheemat & Habahbeh, Ahmad & Ali, Niamat & Shandi, Ibrahim & Niazi, Racha & Habib, Fatima. (2025). Depression and Anxiety as Predictors of Quality of Life in Osteoarthritis Patients. Cureus. 17. 10.7759/cureus.93872.
- 105. Rasul, Shahmeen & Mashayekhi, Yashar & Javaid, Maria & Merie, Sami & Khalaf, Marwah & Ahmed, Talha & Haris, Muhammad & Mustafa, Imtiaz. (2025). Hormonal Changes During Menopause and Their Impact on Bone Health: Insights from Orthopedic and Reproductive Medicine. Cureus. 17. 10.7759/cureus.93224.
- 106. Azmi, S. K. (2025). Kirigami-Inspired Data Sharding for Secure Distributed Data Processing in Cloud Environments.
- 107. Sachar, D. (2025, May). Enhanced Machine Learning Approaches for Network Intrusion and Anomaly Detection. In 2025 Systems and Information Engineering Design Symposium (SIEDS) (pp. 426-431). IEEE.
- 108. Mansur, S. Crimean Tatar Language; Its Past, Present, and Future.
- 109. Sachar, D. (2025, May). Optimizing Transaction Fraud Detection: A Comparative Study of Nature-Inspired Algorithms for Feature Selection. In 2025 Systems and Information Engineering Design Symposium (SIEDS) (pp. 392-397). IEEE. Mansur, S. AI-POWERED DIGITAL LITERACY FOR ADULT LEARNERS: APractice-BASED STUDY ON CONFIDENCE AND SKILL DEVELOPMENT IN TECHNOLOGY USE.
- 110. Almazrouei, K. M. K., Kotb, R., Salem, O. A., Oussaid, A. M., Al-Awlaqi, A. M., & Mamdouh, H. (2025). Knowledge, Attitude and Practice towards Pre-Marital Screening and Consultations among a sample of students in Abu Dhabi, the United Arab Emirates: A Cross-Sectional Study.
- 111. Kumar, K. (2025). Cross-Asset Correlation Shifts in Crisis Periods: A Framework for Portfolio Hedging. *Journal of Data Analysis and Critical Management*, 1(01), 40-51.
- 112. Azmi, S. K. Zero-Trust Architectures Integrated With Blockchain For Secure Multi-Party Computation In Decentralized Finance. Mansur, S. (2025). AI in Education and for Education: Perspectives from Educational Technology and Psychology. *International Research Journal of Modernization in Engineering Technology & Science. https://doi.org/10.56726/irjmets82441*.

- 113. Karamchand, Gopalakrishna & Aramide, Oluwatosin. (2024). CYBERSECURITY AND THE RISING THREAT OF RANSOMWARE. Journal of Tianjin University Science and Technology. 57. 10.5281/zenodo.16948440.
- 114. Gade, S., Kholpe, B. M., Paikrao, U. B., & Kumbhar, G. J. (2025). Enriching redistribution of power in EV Charging Stations through Deep learning. International Journal of Scientific Research in Modern Science and Technology, 4(1), 29-45.