
 Pages: 79-85
 Volume-II, Issue-III (2025)

79 | P a g e Baltic Journal of Multidisciplinary Research - BJMR

Architecting Robust Salesforce Solutions through Apex Design Patterns

Author:

Hiroshi Ono

Corresponding Author: hiroshi126745@gmail.com

Abstract

Salesforce has evolved into one of the most widely adopted cloud platforms, enabling enterprises

to build customized, scalable solutions that power customer engagement, automation, and digital

transformation. However, as applications on the Salesforce platform grow in complexity,

developers face challenges related to scalability, maintainability, and performance. Apex,

Salesforce’s proprietary programming language, provides the flexibility to address these

challenges, but without disciplined architectural practices, applications risk becoming inefficient

and brittle. This paper examines how leveraging Apex design patterns enables the development

of robust Salesforce solutions. It explores key design patterns—including Singleton, Factory,

Strategy, Repository, and Unit of Work—demonstrating how they can enhance modularity,

optimize performance, enforce separation of concerns, and ensure compliance with Salesforce’s

governor limits. By aligning architectural principles with Salesforce’s multi-tenant constraints,

these patterns help organizations build sustainable, high-performing systems. The study

concludes that design patterns are not merely best practices but critical architectural enablers for

delivering robust Salesforce solutions in modern enterprises.

Keywords: Salesforce, Apex, Design Patterns, Robust Architecture, Governor Limits,

Performance, Maintainability, CRM, Scalability

I. Introduction

Salesforce has transformed the way enterprises manage customer relationships and build cloud-

native applications. From sales automation to marketing analytics and service management, the

University of Chicago, Department of Sociology, Chicago, United States

mailto:hiroshi126745@gmail.com

 Pages: 79-85
 Volume-II, Issue-III (2025)

80 | P a g e Baltic Journal of Multidisciplinary Research - BJMR

platform offers powerful capabilities that can be customized and extended to meet diverse

business needs. Central to this customization is Apex, a strongly typed, object-oriented

programming language that allows developers to create advanced business logic and automation.

While Apex empowers developers to build complex enterprise-grade solutions, designing robust

Salesforce applications requires careful consideration of scalability, maintainability, and

compliance with the platform’s inherent constraints.

One of the major challenges in Salesforce development is the platform’s governor limits, which

are designed to protect the multi-tenant architecture. These limits place strict restrictions on

database queries, transaction sizes, and resource consumption. Developers who fail to architect

their solutions properly often encounter runtime exceptions, degraded system performance, and

difficulties in scaling applications. In addition, as organizations grow, Salesforce

implementations tend to accumulate technical debt—unstructured codebases, redundant logic,

and monolithic structures—that undermine maintainability and adaptability.

To overcome these challenges, architects and developers increasingly rely on design patterns,

which provide reusable solutions to recurring software design problems. Originating in general

software engineering, design patterns offer a disciplined approach to structuring applications,

improving modularity, and enabling consistent coding practices. Within Salesforce, adapting

design patterns to Apex is especially valuable, as it not only ensures robust system behavior but

also helps teams navigate governor limits and optimize performance[1].

The application of design patterns in Salesforce goes beyond technical optimization. They foster

collaboration across distributed teams by creating a common architectural language. By

standardizing approaches to problem-solving, patterns reduce variability in coding styles,

simplify knowledge transfer, and enable teams to scale development more effectively. For

organizations undergoing digital transformation, this standardization is critical to maintaining

agility while expanding their Salesforce ecosystem.

This paper explores how Apex design patterns can be applied to architect robust Salesforce

solutions. It first focuses on design patterns that enhance architectural robustness through

modularity, separation of concerns, and code reusability. These include the Singleton, Factory,

 Pages: 79-85
 Volume-II, Issue-III (2025)

81 | P a g e Baltic Journal of Multidisciplinary Research - BJMR

Strategy, and Repository patterns, which form the foundation of maintainable, scalable

Salesforce applications. The second section addresses performance and resilience, highlighting

how patterns such as Unit of Work and Bulkification help Salesforce applications handle large-

scale data operations, maintain compliance with governor limits, and deliver consistent user

experiences[2].

In a rapidly evolving enterprise landscape, robustness is no longer optional—it is a necessity.

Salesforce applications must scale with business growth, integrate seamlessly with external

systems, and remain adaptable to changing requirements. Design patterns serve as the

architectural backbone that enables these capabilities. By embedding Apex design patterns into

the Salesforce development lifecycle, organizations can build solutions that are not only

functionally rich but also resilient, maintainable, and future-proof[3].

II. Apex Design Patterns for Architectural Robustness

Robustness in Salesforce applications is fundamentally tied to how well the architecture can

handle complexity, adapt to changes, and maintain clarity in design. Apex design patterns

provide structured solutions that reinforce these qualities by encouraging modularity, code reuse,

and separation of concerns. Among the most impactful patterns are Singleton, Factory, Strategy,

and Repository.

The Singleton pattern is frequently employed in Salesforce to ensure that a single instance of a

class is used throughout the application. This is particularly useful for managing shared

resources, such as configuration settings or logging utilities. Instead of duplicating logic across

multiple classes, Singleton centralizes it, reducing redundancy and simplifying future updates.

For instance, if a Salesforce org requires a consistent logging mechanism, a Singleton logger

class can provide a single point of access, improving both maintainability and system

consistency[4].

The Factory pattern plays a crucial role in abstracting object creation, which enhances

extensibility. In Salesforce development, developers often work with multiple implementations

of services, such as different integration handlers or discount calculators. The Factory pattern

 Pages: 79-85
 Volume-II, Issue-III (2025)

82 | P a g e Baltic Journal of Multidisciplinary Research - BJMR

encapsulates the instantiation process, allowing client code to remain agnostic of specific

implementations. This means that when new features are introduced, developers can extend the

system without modifying existing logic, reducing the risk of regressions[5].

The Strategy pattern further enhances robustness by promoting flexibility in behavior selection.

It enables developers to define multiple algorithms and encapsulate them in separate classes that

can be interchanged at runtime. In a Salesforce context, this is highly relevant for business rules

that vary across departments or regions. For example, a global enterprise may need to implement

region-specific tax calculation logic. With the Strategy pattern, each region’s algorithm can be

encapsulated separately, making it easier to maintain and extend without impacting the entire

system.

The Repository pattern strengthens architectural robustness by centralizing database access logic.

Rather than scattering SOQL queries across multiple classes, developers can encapsulate queries

within a repository layer, creating a consistent and reusable interface for data access. This

approach not only improves readability but also simplifies optimization and refactoring efforts.

By isolating database interactions, the Repository pattern reduces the risk of duplicating

inefficient queries and makes the system more adaptable to schema changes[6].

Collectively, these patterns establish a foundation of robustness by addressing common

architectural pitfalls. They enforce separation of concerns, ensuring that classes focus on specific

responsibilities, which improves testability and debugging. They also facilitate collaboration

among development teams by providing a consistent and predictable framework for organizing

code. Ultimately, by applying these patterns, Salesforce developers can architect solutions that

are resilient, adaptable, and easier to evolve as business requirements change.

III. Apex Design Patterns for Performance and Resilience

While architectural robustness ensures adaptability and clarity, Salesforce solutions must also

perform reliably under heavy workloads and remain resilient against platform constraints. Apex

design patterns such as Unit of Work, Bulkification, and Cache-aside are instrumental in

achieving these objectives[7].

 Pages: 79-85
 Volume-II, Issue-III (2025)

83 | P a g e Baltic Journal of Multidisciplinary Research - BJMR

The Unit of Work pattern is particularly effective in optimizing database transactions. In

Salesforce, governor limits strictly control the number of database operations allowed per

transaction. By grouping related operations into a single transaction, Unit of Work ensures that

inserts, updates, and deletes are executed efficiently and within limits. This prevents redundant

operations, reduces the risk of exceeding system constraints, and improves overall execution

speed. For example, in a complex order management system, Unit of Work can coordinate

updates to orders, line items, and related records in a structured, efficient manner[8].

The Bulkification pattern is another cornerstone of performance optimization in Salesforce.

Unlike traditional design patterns, bulkification is a Salesforce-specific principle that ensures

code can handle multiple records in a single execution context. Instead of executing queries or

DML operations inside loops, bulkified code processes collections of records at once. This is

critical for maintaining compliance with governor limits and ensuring scalability. Bulkification,

when combined with Unit of Work, provides a powerful approach to managing large datasets

efficiently.

The Cache-aside pattern further enhances performance by reducing repetitive database queries.

In Salesforce, frequently accessed reference data—such as configuration values or product

catalogs—can be cached using Platform Cache, Custom Settings, or Custom Metadata. By

retrieving data from cache rather than repeatedly querying the database, developers improve

response times and reduce the likelihood of hitting query limits. This is particularly valuable in

scenarios where performance and scalability are paramount, such as high-volume customer

portals or integration-heavy applications[9].

Patterns like Strategy also play a role in performance and resilience by enabling flexible

optimization. For example, when processing datasets of varying sizes, different strategies may be

more efficient. Small datasets might be processed synchronously, while larger datasets are better

suited for asynchronous batch or queueable Apex processes. By encapsulating these variations

into strategies, developers can dynamically select the most efficient approach at runtime,

ensuring optimal performance across scenarios[10].

 Pages: 79-85
 Volume-II, Issue-III (2025)

84 | P a g e Baltic Journal of Multidisciplinary Research - BJMR

Finally, performance and resilience are reinforced by consistent application of the Separation of

Concerns principle. By isolating business logic, database operations, and integration processes,

design patterns create a modular architecture that is easier to optimize and monitor. This

modularity also enhances resilience, as isolated components reduce the risk of cascading failures

when errors occur[11].

Together, these performance-oriented design patterns enable Salesforce solutions to operate

within platform constraints while delivering efficient and reliable user experiences. They not

only help developers optimize resource usage but also ensure that applications can scale and

adapt to increasing business demands without compromising stability[12].

IV. Conclusion

Architecting robust Salesforce solutions requires more than functional completeness; it demands

systems that are scalable, maintainable, and resilient under platform constraints. Apex design

patterns provide proven strategies to achieve this robustness. Patterns such as Singleton, Factory,

Strategy, and Repository strengthen architectural clarity and adaptability, while Unit of Work,

Bulkification, and Cache-aside ensure performance and resilience within Salesforce’s governor

limits. By embedding these patterns into the development lifecycle, enterprises can reduce

technical debt, optimize resource utilization, and build sustainable systems. Ultimately, Apex

design patterns are not just best practices—they are foundational to architecting Salesforce

solutions that can withstand the complexities of modern enterprise demands.

References:

[1] A. S. da Cunha, F. C. Peixoto, and D. M. Prata, "Robust data reconciliation in chemical reactors,"
Computers & Chemical Engineering, vol. 145, p. 107170, 2021.

[2] V. Atlidakis, P. Godefroid, and M. Polishchuk, "Restler: Stateful rest api fuzzing," in 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE), 2019: IEEE, pp. 748-
758.

[3] D. Kornienko, S. Mishina, S. Shcherbatykh, and M. Melnikov, "Principles of securing RESTful API
web services developed with python frameworks," in Journal of Physics: Conference Series,
2021, vol. 2094, no. 3: IOP Publishing, p. 032016.

 Pages: 79-85
 Volume-II, Issue-III (2025)

85 | P a g e Baltic Journal of Multidisciplinary Research - BJMR

[4] L. Li, W. Chou, W. Zhou, and M. Luo, "Design patterns and extensibility of REST API for
networking applications," IEEE Transactions on Network and Service Management, vol. 13, no. 1,
pp. 154-167, 2016.

[5] W. Zhou, L. Li, M. Luo, and W. Chou, "REST API design patterns for SDN northbound API," in
2014 28th international conference on advanced information networking and applications
workshops, 2014: IEEE, pp. 358-365.

[6] H. A. Javaid, "Ai-driven predictive analytics in finance: Transforming risk assessment and
decision-making," Advances in Computer Sciences, vol. 7, no. 1, 2024.

[7] J. R. Jensen, V. von Wachter, and O. Ross, "An introduction to decentralized finance (defi),"
Complex Systems Informatics and Modeling Quarterly, no. 26, pp. 46-54, 2021.

[8] S. Werner, D. Perez, L. Gudgeon, A. Klages-Mundt, D. Harz, and W. Knottenbelt, "Sok:
Decentralized finance (defi)," in Proceedings of the 4th ACM Conference on Advances in Financial
Technologies, 2022, pp. 30-46.

[9] M. Aquilina, J. Frost, and A. Schrimpf, "Decentralized finance (DeFi): A functional approach,"
Journal of Financial Regulation, vol. 10, no. 1, pp. 1-27, 2024.

[10] V. Laxman, "The Science of Data Migration: Bridging Theory and Practice in Real-World
Scenarios," International Journal of Leading Research Publication(IJLRP), vol. 6, p. 10, 2025, doi:
10.70528/IJLRP.v6.i2.1282.

[11] Z. Huma, "Transfer Pricing as a Tool for International Tax Competition in Emerging Markets,"
Aitoz Multidisciplinary Review, vol. 3, no. 1, pp. 292-298, 2024.

[12] H. Azmat, "Artificial Intelligence in Transfer Pricing: A New Frontier for Tax Authorities?," Aitoz
Multidisciplinary Review, vol. 2, no. 1, pp. 75-80, 2023.

