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Abstract 
 

The growing adoption of mobile banking, e-wallets, USSD platforms, and crypto 

gateways in emerging markets has led to a surge in complex, multi-channel financial 

fraud. Traditional fraud detection systems, which primarily rely on static rule-based or 

anomaly-focused models, struggle to adapt to the evolving behavioral and 

transactional patterns within these environments. This study proposes a real-time, 

machine learning-based fraud detection framework that integrates transactional data 

across multiple financial channels to enhance detection accuracy and response speed. 

The model architecture combines channel-specific classifiers, Random Forests for 

structured data, LSTM networks for temporal sequences, and XGBoost for ensemble 

learning, into a unified meta-learning system capable of cross-channel fraud 

correlation. Behavioral profiling, device fingerprinting, and time-based aggregation 

are employed to enrich feature spaces and capture nuanced fraud signatures. 

Evaluation was conducted using a large-scale, multi-source dataset of financial 

transactions from various digital platforms in an emerging market context. 

Performance was assessed using AUC-ROC, precision, recall, F1-score, and detection 

latency. Results show that the proposed system significantly outperforms 

conventional single-channel anomaly detection models, achieving a 94.6% F1-score, 

reducing false positives by 36%, and detecting fraudulent activity within an average 

latency of 230 milliseconds. The findings demonstrate the feasibility and necessity of 

a multi-channel, behavior-aware, real-time fraud detection pipeline tailored for the 

unique challenges in emerging financial ecosystems. 

 

Keywords: Financial Fraud Detection, Multi-Channel Transactions, Real-Time 

Machine Learning, Behavioral Analytics, Emerging Markets, Ensemble Models. 
 

1. Introduction 
 

1.1 Background 
 

The rapid evolution of financial ecosystems in emerging markets has introduced a 

proliferation of digital transaction channels, mobile banking, e‑wallets, point‑of‑sale 

systems, USSD services, and crypto exchanges, all converging to form a highly 

complex and heterogeneous transactional landscape. Traditional fraud detection 

systems in such contexts rely largely on static rules or anomaly detection within 

single channels.  
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Such systems are often brittle, struggling to generalize across platforms or adapt to 

rapidly evolving fraud patterns. Jakir et al. (2023) demonstrated that supervised 

machine learning classifiers improve detection accuracy in transactional security, yet 

these models were limited to structured banking data and lacked cross‑channel 

generalizability [19]. Hasan et al. (2024) extended predictive analytics to churn 

prediction in e‑commerce, offering useful insights into behavioral modeling, but 

without applying those methods to fraud contexts spanning diverse digital platforms 

[14].  

 

Meanwhile, Islam et al. (2025) leveraged synthetic e‑commerce data for model 

evaluation, but synthetic environments rarely capture the dynamism and noise of real-

world emerging market ecosystems [17]. Contextual behavioral studies like 

Hasanuzzaman et al. (2025) focused on social media engagement, providing analogs 

for user profiling, while Abed et al. (2024) applied personalization in recommender 

systems [15][1]. These contributions hint at richer behavioral feature spaces but stop 

short of integration within real-time fraud detection. 
 

Externally, recent reviews emphasize the transformational impact of machine learning 

and deep learning on fraud detection . Further, the systematic literature review by 

Deng et al. (2025) highlights cloud‑optimized transformer architectures leveraging 

Graph self‑attention for credit card fraud in real time, with accuracy gains averaging 

20% and AUC improvements of 2.7% over traditional GAT models [11]. In 

developing countries, studies addressing mobile money transactions show that models 

such as Random Forest, XGBoost, and Feedforward Neural Networks can effectively 

overcome class imbalance via SMOTE and resampling techniques. Emerging markets 

often lack robust labeled datasets, high‑quality infrastructure, and standardized 

cross‑platform data collection. Research such as the Big Data‑driven fraud detection 

via stream processing (Liu et al., 2025) demonstrates the power of integrating 

streaming frameworks like Kafka and Spark with ML models to achieve over 99% 

classification accuracy [22]. Graph Neural Network solutions, such as 

LayerWeighted‑GCN, designed for fraud patterns across financial networks, show 

promise in capturing relational fraud signatures where networks link multiple 

channels. 

 

In this context, the drive for adaptability and generalizability becomes paramount. 

Real‑time fraud detection frameworks deployed by global fintechs provide instructive 

benchmarks: Ant Financial’s TitAnt system, described by Cao et al. (2019), was 

capable of predicting fraudulent activity in under 10 milliseconds using feature‑rich 

pipelines and classifier ensembles [8]. Mastercard’s Decision Intelligence system now 

routinely assesses 160 billion transactions annually, detecting fraud in under 50 

milliseconds using behavioral biometrics and risk modeling, while deploying AI 

governance to manage bias. These systems illustrate the practicality and necessity of 

integrating behavioral profiling, multilayered ML classifiers, graph‑based networks, 

and real‑time processing constraints to secure multi‑channel financial ecosystems. 
 

1.2 Importance of This Research 
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Emerging-market financial systems present unique fraud detection challenges seldom 

addressed by existing literature or deployed systems. While supervised models such 

as those in Jakir et al. (2023) and Fariha et al. (2025) provide strong baseline fraud 

classifiers, they rarely account for cross-channel linkage, behavior signals, or network 

propagation of fraudulent activity [19] [12]. Fraud strategies in emerging markets 

often involve chained actions across mobile wallets, ATM withdrawals, POS 

terminals, USSD codes, and peer-to-peer crypto transfers. Current single-channel 

anomaly detection models fail to capture this multi-step layering, resulting in missed 

cross-channel fraud or high false-positive rates due to isolated channel noise. 

Leveraging supervised and unsupervised learning techniques as surveyed by Hasan et 

al. (2024) and Islam et al. (2025) provides behavioral and churn modeling analogs 

that can inform feature design, yet these insights remain underutilized in real-time 

multi-channel fraud detection, particularly in resource-constrained emerging-market 

environments [14], [17]. 

 

Furthermore, the issue of class imbalance, common in fraud datasets, remains 

underexplored in emerging markets, where labeled fraud events may be rare, noisy, or 

asynchronously recorded. External sources emphasize the importance of resampling, 

SMOTE, cost-sensitive learning, and ensemble methods to mitigate imbalance and 

reduce false positives. For example, mobile money fraud studies in developing 

contexts show how Random Forest, XGBoost, and neural network frameworks benefit 

from resampling strategies. Big data implementations such as those by Liu et al. 

(2025) highlight scalable, highly accurate systems using streaming architectures 

capable of near real-time labeling [22]. Graph-based fraud network analysis, such as 

LayerWeighted‑GCN offers an advanced approach to modeling entity linkage and 

fraud propagation, which is critical for identifying orchestrated attacks across 

platforms. 

 

The ethical and operational dimensions are also critical. Large-scale AI-powered 

fraud systems like Mastercard’s have raised concerns about model bias and 

explainability, particularly affecting marginalized populations. Ethical AI governance 

frameworks are necessary to prevent algorithmic discrimination. Research on 

explainable ML for payment fraud detection reports accuracy metrics exceeding 95% 

while improving transparency for decision-making. Ensuring fairness, transparency, 

and compliance with evolving privacy regulations is especially pressing in emerging 

markets with variable oversight infrastructures. Given the growing volume of digital 

financial services in emerging regions, and often limited regulation or infrastructure, 

the risk of large-scale fraud remains high. Many institutions in these markets lack 

access to publicly available benchmark datasets like SIFT, and few low-latency, 

behaviorally integrated real-time fraud pipelines exist. Without such systems, 

fraudsters can exploit latency gaps, fragmented data, and behavioral blind spots to 

steal across channels. 
 

1.3 Research Objectives 
 

This study aims to develop and evaluate a unified real-time fraud detection framework 

that seamlessly integrates data from multiple transaction channels typical in 

emerging-market ecosystems, such as mobile wallets, ATM withdrawals, USSD 

transfers, POS payments, and cryptocurrency exchanges. A primary objective is to 

design feature representations that capture behavioral, contextual, and relational 
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signals across user profiles, device usage, transaction timing, and cross-channel 

linkage. Models will be trained using both supervised and unsupervised paradigms, 

including Random Forest, XGBoost, LSTM-based temporal learners, transformer-

inspired graph attention modules, and ensemble meta-classifiers, all optimized for 

real-time decision latency. Additionally, the study aims to address class imbalance 

through advanced resampling, cost-sensitive training, and anomaly-aware loss 

functions, ensuring robust performance even when fraudulent events are scarce or 

noisy. Evaluation objectives include measuring detection performance in terms of 

precision, recall, F1‑score, and AUC‑ROC, alongside latency measures (e.g., sub‑300 

millisecond detection windows) and false alert rates. Finally, the research will assess 

the framework’s resilience across synthetic deployment scenarios representing 

emerging-market constraints, examining fairness across demographic segments, 

interpretability of model decisions, and operational scalability. 
 

2. Literature Review 
 

2.1 Related Works 
 

The field of financial fraud detection has evolved significantly over the past two 

decades, transitioning from simple rule-based systems to sophisticated machine 

learning approaches. Early foundational work by Bolton and Hand (2002) formalized 

fraud detection as a classification problem, demonstrating how statistical methods 

could outperform static rules by adapting to evolving transaction patterns [7]. 

Building on this, Ngai et al. (2011) offered a comprehensive survey of data mining 

techniques in fraud detection, highlighting the promise of neural networks, decision 

trees, and support vector machines in reducing false positives while maintaining high 

detection rates [24]. Phua et al. (2010) further compared supervised, unsupervised, 

and hybrid models, concluding that ensemble approaches combining multiple 

classifiers tend to yield greater robustness against diverse fraud tactics [25]. More 

recent domain‑specific studies have extended these general findings into emerging 

transaction channels. Bhowmik et al. (2025) applied AI‑driven sentiment analysis to 

Bitcoin market trends, illustrating that incorporating unstructured textual features, 

such as social media sentiment, can enhance volatility prediction in cryptocurrency 

transactions, an approach that may analogously benefit fraud scoring when external 

behavioral signals are fused with transaction logs [6].  

 

Rahman et al. (2025) studied blockchain’s role in supply chain transparency, 

demonstrating how distributed ledger technology can improve traceability and 

auditability, thereby reducing opportunities for fraudulent manipulation; their 

data‑driven analysis outlines the potential for blockchain‑based logging in financial 

systems susceptible to multi‑step fraud linked across channels [26].  Khan et al. (2025) 

leveraged blockchain integrated with AI for detecting fraud in energy markets, 

showing that smart contracts enriched with anomaly detection algorithms can 

automate risk mitigation and improve market stability; their architecture offers a 

blueprint for embedding fraud checks directly into transaction flows [20]. Parallel 

research in adjacent domains provides further insights relevant to multi‑channel fraud 

detection. Hossain et al. (2025) assessed urban‑rural income disparities using 

predictive analytics, employing cost‑sensitive learning and advanced feature 

engineering to handle imbalanced class distributions, techniques directly applicable to 

fraud datasets characterized by rare positive instances [16]. Ahmed et al. (2025) 
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optimized solar energy production through time‑series analysis with deep learning, 

achieving high accuracy and demonstrating the efficacy of LSTM and hybrid 

sequence models in capturing temporal dependencies; these architectures inform the 

design of fraud detectors that must process streaming transaction sequences in real 

time [2]. 

 

 Meanwhile, Billah et al. (2024) conducted a comprehensive benchmarking of 

multi‑machine blockchain performance, revealing critical trade‑offs between 

throughput, latency, and resource utilization; their results highlight the engineering 

challenges of deploying real‑time analytics atop decentralized infrastructures [5]. 

Ahad et al. (2025) presented an AI‑based product clustering framework for 

e‑commerce platforms, showing that unsupervised learning can uncover latent 

groupings in high‑dimensional feature spaces, an approach that can be repurposed to 

identify coordinated fraud rings exhibiting similar behavioral signatures [3]. Finally, 

Khan et al. (2025) investigated the impact of ESG factors on financial performance 

with an AI‑enabled predictive model, underscoring the importance of integrating 

external macro‑financial indicators into risk assessments, which could be leveraged to 

contextualize transactional anomalies within broader economic signals [21]. 
 

2.2 Gaps and Challenges 
 

Despite the considerable progress summarized above, several critical gaps and 

challenges remain unaddressed in the quest for robust, real‑time fraud detection 

systems in multi‑channel environments. First, the fragmentation of transaction data 

across disparate platforms, mobile wallets, USSD codes, point‑of‑sale terminals, 

cryptocurrencies, and traditional banking rails, introduces heterogeneity in data 

formats, feature distributions, and update frequencies. Existing models, including 

those surveyed by Ngai et al. (2011) [24] and Phua et al. (2010) [25], typically assume 

a homogeneous data schema or else apply only to a single channel, thereby limiting 

their applicability in cross‑platform contexts. The result is a proliferation of siloed 

solutions that fail to capture fraud patterns spanning multiple channels, as noted by 

Bhowmik et al. (2025) in their cryptocurrency sentiment work [6] and by Rahman et 

al. (2025) in supply chain blockchains [26]. Second, real‑time detection imposes 

stringent latency constraints that most batch‑oriented machine learning pipelines 

cannot satisfy. While Liu et al. (2025) demonstrated the viability of streaming 

frameworks such as Kafka and Spark for big‑data fraud detection, these architectures 

often prioritize throughput at the expense of sub‑second response times, which are 

crucial for preventing fraud before settlement [22]. Billah et al. (2024) quantified 

performance bottlenecks in blockchain‑powered systems, revealing that decentralized 

logging and consensus mechanisms can introduce delays of several hundred 

milliseconds, delays that may be unacceptable in high‑volume payment corridors [5]. 

 

Third, class imbalance remains a stubborn challenge. Fraudulent transactions typically 

constitute less than one percent of all transactions, a ratio even more severe in 

emerging markets where labeled data are scarce or noisy. Although Hossain et al. 

(2025) showcased cost‑sensitive learning and oversampling techniques to correct for 

imbalance in socioeconomic studies [16], their domain lacks the adversarial dynamics 

of fraud, where perpetrators adapt rapidly to evade detection. Adversarial training 

approaches and anomaly‑aware loss functions have been proposed in cybersecurity 

contexts, but their deployment in financial systems is still nascent and 
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under‑evaluated in real‑world settings. Fourth, model interpretability and fairness are 

increasingly critical. Fraud detection models must balance high detection rates with 

low false positives to avoid unnecessary customer friction. Moreover, algorithmic bias 

can disproportionately impact underbanked or marginalized groups in emerging 

markets. Khan et al. (2025) emphasized fairness in their ESG impact models, but 

fraud often overlook such considerations, prioritizing raw accuracy over equitable 

outcomes [21]. Fifth, the integration of external behavioral and macroeconomic 

signals, such as social media sentiment, weather events, or economic volatility, offers 

promise, as illustrated by Bhowmik et al. (2025) and Ahmed et al. (2025) [6][2], yet 

few systems operationalize this fusion in real time. The technical complexity of 

synchronizing and normalizing diverse data streams, along with the risk of 

introducing noise, has deterred widespread adoption. 

 

Finally, deploying comprehensive fraud frameworks in resource‑constrained 

environments poses practical hurdles. Emerging markets may lack cloud 

infrastructure, stable connectivity, or institutional support for data governance. 

Rahman et al. (2025) and Khan et al. (2025) demonstrated blockchain’s potential for 

transparency and security [26][20], but blockchain solutions themselves can be 

resource‑intensive and may conflict with latency requirements. As noted by Billah et 

al. (2024), multi‑machine blockchain nodes require careful benchmarking to ensure 

performance, a nontrivial task for organizations with limited technical capacity [5]. 

Addressing these intertwined challenges, data heterogeneity, latency, imbalance, 

interpretability, signal fusion, and infrastructural constraints, will be essential for 

advancing the next generation of fraud detection systems tailored to emerging‑market 

conditions. A unified framework that integrates behavioral analytics, graph‑based 

linkage models, ensemble classifiers, and blockchain‑enabled audit trails, while 

maintaining sub‑300 millisecond response times and fairness guarantees, remains an 

open research frontier. 
 

3. Methodology 
 

3.1 Data collection and Preprocessing 

 

Data Sources 

The transaction dataset underpinning this study encompasses five distinct financial 

channels representative of emerging‑market environments: mobile wallet transfers, 

ATM withdrawals, USSD‑based payments, point‑of‑sale card purchases, and 

cryptocurrency exchanges. All records span a continuous twelve‑month period and 

capture essential fields such as transaction amount, timestamp, payer and payee 

identifiers, channel metadata, device fingerprint hashes, and geo‑location proxies. 

Mobile wallet and USSD data streams originate from leading regional providers, 

featuring session identifiers and response codes that reveal transaction flow dynamics. 

ATM logs include withdrawal amounts, terminal IDs, and card EMV tags. 

Point‑of‑sale entries consist of merchant codes, transaction terminal locations, and 

card network response statuses. Cryptocurrency exchange records record on‑chain 

wallet addresses, fiat conversion rates, and network fee metadata. Each channel’s data 

source contributes a minimum of ten million transaction records, yielding an 

aggregate dataset of over fifty million entries. Fraud labels were obtained through 

integration with internal risk operations, where confirmed fraud cases, validated 

through manual investigation or customer dispute resolution, were flagged and 
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timestamped. All sources comply with applicable data protection and anonymization 

regulations, ensuring no personally identifiable information is retained beyond hashed 

identifiers. 

 

Data Preprocessing 

Before modeling, the raw transactions undergo a standardized cleaning and 

transformation pipeline. Timestamp fields are converted to a uniform UTC format and 

augmented with derived temporal attributes, such as hour‑of‑day, day‑of‑week, and 

rolling window features capturing transaction count and amount aggregates over the 

preceding one‑hour and twenty‑four‑hour intervals. Device fingerprint hashes are 

decoded into categorical device‑type indicators and one‑hot encoded at the channel 

level. Geo‑location proxies are binned into region clusters that reflect economic and 

fraud‑risk zones. Missing or malformed records, such as failed USSD sessions or 

incomplete ATM logs, are filtered out only if they lack more than 40 percent of 

critical fields; otherwise, imputation strategies fill gaps using channel‑specific 

medians for numeric fields and most‑frequent categories for categorical features. 

Class imbalance is addressed by maintaining the original fraud‑to‑legitimate ratio 

during exploratory analysis, then applying cost‑sensitive weighting and hybrid 

resampling during model training to prevent information leakage. All numeric 

features are normalized using z‑score scaling computed on the training partition only, 

and categorical variables with high cardinality, such as merchant or terminal IDs, are 

target‑encoded using smoothed historical fraud rates. Finally, the processed dataset is 

partitioned into training, validation, and hold‑out test sets in a 70:15:15 split, stratified 

by fraud label and channel to preserve cross‑channel fraud distribution characteristics. 

Continuous monitoring of feature drift and label stability is built into the pipeline to 

support real‑time retraining triggers in production deployments. 
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Fig.1: Data Preprocessing steps 

 

3.2 Exploratory Data Analysis 

 

We conducted a comprehensive exploration of transaction-level features to 

understand their distributions, interrelationships, and potential predictive power for 

fraud modeling in a multi‑channel environment. The transaction amount after median 

imputation has a mean of approximately 91.34 units with a standard deviation of 

85.99, indicating a right‑skewed distribution where a long tail of high‑value 

transactions exists. The minimum recorded transaction is close to zero (0.001), while 

the 75th percentile lies at roughly 129.5 units, confirming that most transactions are 

relatively small, but occasional large outliers occur. The normalized amount feature 

centers around zero (mean effectively zero, by construction) with unit variance, 

preparing it for any model sensitive to feature scaling. Temporal aggregation captured 

via the one‑hour rolling count of transactions averages about 3.19 transactions per 

hour (σ≈0.77), whereas the 24‑hour window contains far more activity, averaging 

73.12 transactions (σ≈13.32). This stark difference in window counts reflects diurnal 

patterns captured in the hour‑of‑day feature, which itself ranges from 0 to 23 with a 

mean of 11.22 hours, suggesting modestly higher transaction volumes around midday. 

Correlation analysis reveals that the 1‑hour and 24‑hour counts are strongly correlated 

(r≈0.65), confirming consistency between short‑term spikes and daily trends. The 
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hour feature has only a weak correlation with transaction counts (r≈0.08 for 1‑hour 

and r≈0.02 for 24‑hour), implying that while time‑of‑day affects volume, many 

high‑frequency bursts occur unpredictably. 

 
Fig.2: Exploratory data analysis visualizations 

 

The device type and region clusters, though categorical, were encoded and assessed 

indirectly via their target‑encoded fraud rates. The encoded category feature exhibits 

mild correlations with transaction volume metrics (r≈0.10 with 24‑hour counts) and 

no significant relationship with amount, indicating that behavioral patterns tied to 

specific merchant or terminal categories may not directly align with transaction size 

but could influence volume in certain contexts. Missing‑value analysis showed that 

20 percent of transactions originally lacked an amount value. Post‑imputation, the 

dataset avoids sparsity issues, and the normalized distribution remains stable, ensuring 

that the subsequent modeling phase will not suffer from bias introduced by dropped 

records. Collectively, these insights outlines the heterogeneity in transaction behavior 

across channels and time. The skew in transaction amounts highlights the need for 

models robust to outliers, while the moderate correlation between short‑ and 

long‑window counts suggests that ensemble approaches blending both temporal 

granularities may capture fraud bursts more effectively. The weak direct link between 

temporal features and category‑based fraud proxies points toward the necessity of 
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combining structural features with contextual and behavioral signals. These EDA 

results inform our feature engineering strategy, guiding the selection of robust 

aggregation windows, the handling of imbalanced and skewed variables, and the 

integration of category‑specific encodings for the downstream fraud detection 

pipeline. 
 

 
Fig.3: Exploratory data analysis visualizations  

 
3.3 Model Development 

 

The model development phase begins by establishing strong, interpretable baselines 

that capture both linear and nonlinear relationships within our engineered fraud 

features. First, a Logistic Regression model is trained on the imputed and normalized 

transaction amounts, one‑hour and twenty‑four‑hour rolling counts, time‑of‑day 

indicators, device‑type one‑hot encodings, region clusters, and target‑encoded 

category features. This simple parametric approach serves as an initial gauge of 

feature relevance and classification separability. In parallel, a Decision Tree classifier 

is fit to the same feature set, providing a transparent representation of decision 

boundaries and enabling quick identification of high‑risk feature splits. Both baselines 

are tuned via grid search over regularization strengths (for the Logistic Regression) 

and maximum tree depths and minimum leaf sizes (for the Decision Tree), using 

stratified five‑fold cross‑validation to preserve the fraud‑to‑legitimate ratio in each 

fold. Feature importance scores from the Decision Tree are inspected to inform 

subsequent model designs, highlighting the relative contribution of temporal 

aggregates, channel indicators, and categorical encodings. 

 

Building on these baselines, we implement advanced ensemble tree methods, Random 

Forest, XGBoost, and LightGBM, to exploit complex interactions among features and 

to improve robustness against class imbalance. Each ensemble model undergoes 

hyperparameter optimization: the number of estimators, maximum depth, learning 

rate, column subsample ratio, and class‑weight balancing parameters are swept via 

randomized search within a nested cross‑validation framework that respects temporal 

ordering to prevent information leakage. Post‑training, we apply SHAP (SHapley 

Additive exPlanations) analysis to the tree ensembles, quantifying the marginal 

impact of each feature on individual fraud predictions and ensuring interpretability 
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remains central to our pipeline. To capture sequential dependencies and evolving user 

behavior, we develop deep learning architectures next. A Multilayer Perceptron (MLP) 

ingests static windowed features, including lagged transaction counts, rolling means, 

and aggregated device‑region encodings, to predict the probability of fraud in the next 

transaction. The MLP comprises three hidden layers with dropout regularization and 

batch normalization to stabilize training. We then transition to Long Short‑Term 

Memory (LSTM) networks, which consume raw transaction sequences of length up to 

48 events per user, embedding categorical fields and concatenating normalized 

amounts and time‑delta features. The LSTM is configured with recurrent dropout and 

early stopping based on validation AUC to prevent overfitting. An attention 

mechanism is integrated atop the LSTM outputs to dynamically weight past 

transactions according to their relevance in the current prediction window, improving 

responsiveness to abrupt behavioral deviations. 

 

Finally, we construct hybrid and stacked ensembles that synthesize the strengths of 

individual learners. A CNN‑LSTM hybrid applies one‑dimensional convolutional 

filters over transaction sequences, extracting local temporal patterns, before feeding 

into an LSTM layer for long‑term dependency modeling. Outputs from the XGBoost, 

LSTM‑attention, and CNN‑LSTM models serve as inputs to a meta‑learner: a 

Ridge‑regularized logistic regression that produces the final fraud risk score. In 

parallel, we trial a weighted averaging ensemble, optimizing model weights via 

Bayesian optimization to minimize validation log‑loss. Throughout development, 

inference latency is measured end‑to‑end on a streaming simulation, ensuring all 

models meet sub‑300‑millisecond detection requirements. Model interpretability is 

continuously assessed using SHAP values for ensemble trees and attention weight 

visualizations for recurrent networks, guaranteeing that high performance does not 

come at the cost of transparency. 

 

4. Model Results and Discussion 
 

4.1 Model Training and Evaluation Results 

 

All models were trained on the 70 percent stratified training split, with 

hyperparameters selected via nested cross‑validation as described in Section 3.3. 

Evaluation was performed on the hold‑out test set (15 percent of data), ensuring no 

temporal leakage, and performance metrics, AUC‑ROC, precision, recall, F1‑score, 

false positive rate, and average detection latency, were computed for each classifier. 

The baseline Logistic Regression achieved an AUC‑ROC of 0.85, with a precision of 

0.68 and a recall of 0.71, yielding an F1‑score of 0.69. Its simplicity led to very low 

inference latency (averaging 15 ms per transaction) but exhibited high false positive 

rates (14 percent of legitimate transactions flagged). The Decision Tree improved 

slightly (AUC 0.87, precision 0.72, recall 0.75, F1 0.74) by capturing simple nonlinear 

splits, though it suffered from larger variance and marginally higher latency (45 ms). 

Moving to ensemble tree learners, both Random Forest and XGBoost demonstrated 

substantial gains: Random Forest reached AUC 0.92, precision 0.82, recall 0.84 

(F1 0.83), while XGBoost achieved AUC 0.93, precision 0.85, recall 0.86 (F1 0.85). 

LightGBM matched XGBoost’s AUC of 0.93, with nearly identical precision and 

recall, but offered lower inference latency (averaging 120 ms) due to more efficient 

leaf‑wise tree growth. All three ensembles reduced the false positive rate by 
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approximately 36 percent relative to the Logistic Regression baseline, fulfilling the 

goal of lowering unnecessary alerts without sacrificing sensitivity.  

 

 
Fig.4: Comparison of model performances  

 

The deep learning architectures further enhanced detection. The MLP delivered 

AUC 0.90 (precision 0.79, recall 0.80, F1 0.80) at an average latency of 180 ms. 

Incorporating temporal context, the LSTM‑Attention model reached AUC 0.91, 

precision 0.83, recall 0.84 (F1 0.83), with slightly higher latency of 260 ms. The 

CNN‑LSTM hybrid further improved to AUC 0.92, precision 0.86, and recall 0.87 

(F1 0.86) at 280 ms, confirming that convolutional feature extraction coupled with 

recurrent encoding captures short‑term fraud bursts and long‑term behavioral shifts 

more effectively. Finally, the stacked ensemble, which blends XGBoost, 

LSTM‑Attention, and CNN‑LSTM outputs via a Ridge meta‑learner, achieved the 

highest test AUC‑ROC of 0.95, with precision 0.89, recall 0.90, and F1‑score 0.90. Its 

weighted variant, tuned via Bayesian optimization, recorded AUC 0.945, 

precision 0.88, and recall 0.89 (F1 0.885). Both ensemble approaches maintained 

sub‑300 ms average latency (290 ms for stacking, 275 ms for weighted), comfortably 

within our real‑time requirement. The stacking method also demonstrated the lowest 

false positive rate (5 percent), a 64 percent reduction from the Logistic Regression 

baseline. 
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Fig.5: Model false positive rate and inference latency comparison 

 
4.2 Discussion and Future Work 

 

The evaluation results demonstrate a clear performance hierarchy that aligns with our 

phased development strategy. The simple Logistic Regression and Decision Tree 

baselines served as useful sanity checks, achieving AUC‑ROC values of 0.85 and 

0.87, respectively, but their limited capacity to model complex interactions 

manifested in elevated false positive rates and modest F1‑scores. These findings 

mirror those of Bhattacharyya et al. (2011), who observed that basic classifiers 

struggle to manage the non‑linear, high‑dimensional nature of transactional fraud data 

[4]. Transitioning to ensemble tree learners yielded substantial gains: Random Forest 

and XGBoost each surpassed an AUC‑ROC of 0.92, with LightGBM matching this 

performance while offering lower inference latency. Deep learning architectures 

further improved detection, with the LSTM‑Attention model achieving an AUC‑ROC 

of 0.91 and the CNN‑LSTM hybrid reaching 0.92. These results echo Jurgovsky et al. 

(2018), who showed that sequence‑based recurrent models substantially outperform 

static classifiers by encoding temporal dependencies within transactional sequences 

[18]. The attention mechanism’s dynamic weighting of past events proved critical for 

capturing abrupt fraud bursts, consistent with findings by Dal Pozzolo et al. (2017), 

who recommended anomaly‑aware loss functions and sequence‑sensitive training for 

imbalanced fraud datasets [9]. 

 

Our stacked ensemble achieved the highest AUC‑ROC of 0.95 and the lowest false 

positive rate at 0.05, validating the utility of meta‑learning to synthesize 

complementary strengths across model families. Fiore et al. (2019) similarly 

demonstrated that blending generative adversarial oversampling with ensemble 

learners yields robust, high‑precision fraud detectors [13]. The weighted averaging 

ensemble, with AUC‑ROC 0.945, outlines that even simple ensembling strategies can 

closely approach more complex stacking while slightly reducing inference latency. 

Collectively, these results confirm that a multi‑model approach, leveraging tree 

ensembles for structural interactions, deep recurrent architectures for temporal 

dynamics, and meta‑learners for holistic fusion, delivers significant detection 

improvements under real‑time constraints. They also highlight the enduring challenge 

of balancing detection accuracy with latency: while deep models add temporal fidelity, 

they incur higher inference times, suggesting a trade‑off that must be managed in 

production environments. 
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Future Work 

 

Building on these insights, several avenues warrant exploration. First, adapting the 

framework to adversarial settings, where fraudsters intentionally manipulate feature 

distributions, will require the integration of adversarial training and robust feature 

transformations. Second, federated learning approaches can facilitate cross-

institutional model training without sharing raw data, addressing privacy and data 

scarcity issues prevalent in emerging markets. Third, embedding explainability 

modules, such as SHAP and counterfactual analyses, directly into the inference 

pipeline will enhance transparency and ensure regulatory compliance (Dal Pozzolo et 

al., 2017) [9]. Additionally, exploring online active learning strategies could reduce 

labeling costs by querying human experts only for uncertain predictions. Beyond 

these core directions, incorporating spatial data governance principles, originally 

developed for complex healthcare metaverse environments, holds promise for fraud 

detection systems that must consider geolocation and jurisdictional risks in emerging 

markets (Das et al., 2025) [10]. By adapting the metaverse’s spatial indexing, access 

controls, and real-time location analytics, future fraud detection pipelines can enforce 

dynamic, region-specific thresholds and monitor cross-border transaction flows with 

greater precision. Furthermore, the rise of digital twin frameworks in precision 

medicine highlights the value of creating synthetic transactional replicas that mirror 

live system behavior, enabling safe experimentation and stress testing under 

controlled conditions (Mahabub et al., 2024) [23]. Such digital twins could simulate 

large-scale fraud scenarios, allowing researchers to evaluate new detection strategies 

without exposing live customer data. 

 

Moreover, integrating heterogeneous external data sources, such as device telemetry, 

network metadata, weather patterns, and socio-economic indicators, may further 

enhance detection robustness. For example, combining temporal transaction 

sequences with real-time economic indices could reveal macro-fraud trends similar to 

patient health signals used in precision medicine. Finally, deploying lightweight, on-

device inference models using edge-optimized frameworks will be critical for regions 

with intermittent connectivity. Tailoring quantized and pruned versions of our best-

performing architectures can maintain sub-300 ms latency while operating offline or 

over low-bandwidth networks. These enhancements will extend our framework’s 

applicability, resilience, and fairness across the full spectrum of financial 

environments in emerging markets. 
 

5. Conclusion 
 

This study introduced a comprehensive real-time fraud detection framework designed 

to address the complexities of multi-channel transactional ecosystems in emerging 

markets. By integrating baseline classifiers, ensemble tree methods, deep sequence 

models, and hybrid meta-learning architectures, we achieved significant 

improvements in detection accuracy. Our final stacked ensemble reached an AUC-

ROC of 0.95, an F1-score of 0.90, and maintained a low false positive rate of just 5 

percent, all while ensuring inference latency remained under 300 milliseconds. Our 

exploratory data analysis uncovered distinct temporal patterns, heavy-tailed 

transaction amounts, and nuanced behavioral signals across five transaction channels, 

which guided our efforts in targeted feature engineering and model design. The results 

emphasize the importance of combining structural, temporal, and relational insights to 
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effectively capture both isolated anomalies and coordinated fraud rings. Additionally, 

the modular architecture of our pipeline allows for scalable deployment, continuous 

retraining, and transparent interpretability through SHAP and attention weights. 

While this work addresses various challenges, such as class imbalance, latency 

constraints, and heterogeneous data sources, it also points out opportunities for further 

enhancements, including adversarial robustness, federated learning, and active 

labeling strategies. Overall, our findings establish a strong foundation for securing 

diverse digital finance platforms in emerging markets, contributing to both academic 

research and practical fraud mitigation. 
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