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Abstract: 

The growing reliance on renewable energy sources, particularly wind and solar power, highlights the critical 

need for intelligent fault prediction systems to ensure operational reliability and minimize downtime. This 

research presents a comprehensive, data-driven machine learning framework designed for fault detection and 

predictive maintenance in renewable energy systems across the United States. We begin by integrating 

sensor, environmental, and operational data collected from wind turbines and photovoltaic (PV) systems to 

create a unified analytical foundation. Through robust feature engineering, we extract domain-specific 

indicators such as power conversion efficiency, inverter performance metrics, temperature anomalies, and 

temporal patterns (hourly, daily, and seasonal). Time series decomposition and statistical aggregations are 

utilized to identify deviations from normal operating behavior. We explore both traditional and deep 

learning models for supervised classification, including Random Forest, XGBoost, and Long Short-Term 

Memory (LSTM) networks. Additionally, we train unsupervised models, such as Autoencoders, to 

reconstruct normal sequences and flag abnormal behaviors based on high reconstruction errors. We evaluate 

the models using metrics including accuracy, precision, recall, F1-score, and ROC-AUC, with CNN-LSTM 

hybrids demonstrating the best performance in detecting early-stage faults across various system types. To 

address class imbalance, we apply SMOTE and other resampling techniques. Visual analysis using Principal 

Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE) confirms effective 

separation between faulty and healthy system states in reduced feature spaces. Finally, we propose a fault 

risk index that aggregates model outputs, anomaly scores, and temporal deviation metrics to enable real-time 

prioritization of at-risk components. Our framework shows strong potential for proactive fault management, 

promoting a more resilient and cost-effective operation of solar and wind energy infrastructures.  
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1. Introduction 

 

1.1 Background 

 

The transition to cleaner energy systems in the United States has catalyzed the exploration and adoption of 

data-driven strategies for sustainable energy management. As the energy landscape diversifies, 

encompassing electric vehicles (EVs), smart grids, and renewable power sources, efficient energy 

consumption and predictive modeling have become essential for achieving environmental and economic 

goals. Traditional energy forecasting methods often struggle with accuracy due to the dynamic, nonlinear, 

and multivariate nature of energy systems.  
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This challenge has necessitated the integration of advanced Artificial Intelligence (AI) and Machine 

Learning (ML) models capable of learning complex temporal and spatial patterns in energy usage, 

optimizing resource allocation, and predicting demand spikes (Barua et al. 2025) [5]. 

Recent research emphasizes the efficacy of ML in forecasting energy demand, managing grid efficiency, and 

reducing carbon emissions across various sectors.  

Hossain et al. (2024) demonstrated the application of time-series ML techniques in optimizing smart grid 

operations by accurately forecasting energy demand fluctuations in the U.S. [8]. Similarly, Reza et al. (2025) 

applied ensemble learning models to forecast energy consumption patterns in urban environments, revealing 

key insights for sustainable development [16]. Anonna et al. (2023) extended this approach by modeling 

U.S. CO₂ emissions using machine learning techniques, supporting policy formulation aimed at emission 

reduction and sustainability [4]. 

 

In specific sectors, machine learning has shown remarkable utility in enhancing operational efficiency and 

reducing energy waste. Ahmed et al. (2025) implemented data-driven ML models to predict energy 

consumption in American hospitals, leading to more informed decisions for energy optimization in 

healthcare infrastructure [1]. In another application, Alam et al. (2025) proposed an intelligent streetlight 

control system using ML algorithms, significantly improving energy efficiency in smart city 

implementations [2]. These innovations illustrate the transformative potential of AI in modernizing public 

and private sector energy systems. Moreover, advancements in predictive analytics have facilitated fault 

detection and preventive maintenance in energy-intensive applications. Amjad et al. (2025) developed an 

AI-powered fault detection system for gas turbines in the U.S. energy sector, minimizing downtime and 

operational costs [3]. In the realm of transportation, Hossain et al. (2025) applied machine learning to 

optimize energy efficiency and predict faults in New Energy Vehicles (NEVs), contributing to the broader 

decarbonization agenda [10]. 

 

To supplement these insights, broader academic literature further corroborates the impact of AI and ML in 

the energy domain. Zhang et al. (2023) analyzed load forecasting techniques in distributed grids, noting that 

deep learning models, particularly Long Short-Term Memory (LSTM) networks, outperform traditional 

statistical models in capturing consumption trends under variable weather and socioeconomic conditions 

[18]. Similarly, Li et al. (2022) explored the application of hybrid ML models combining Random Forest 

and Gradient Boosting for demand-side energy management, achieving significant improvements in energy 

savings for residential buildings [14]. A study by Khan and Jain (2023) introduced clustering-based 

segmentation to identify consumption patterns in U.S. utility data, enabling targeted energy conservation 

strategies [12]. Finally, Luo et al. (2023) investigated the role of AI in managing energy storage systems in 

smart grids, emphasizing predictive maintenance and storage optimization as key areas of benefit [15]. 

 

Given the rapid growth in data availability, computational capabilities, and environmental pressures, this 

study seeks to build on the existing body of work by employing cutting-edge ML algorithms, including 

XGBoost, LSTM, Random Forest, Support Vector Machines (SVMs), and K-Means clustering, to model, 

predict, and optimize energy consumption trends across various U.S. sectors. This endeavor aims to support 

intelligent decision-making, reduce energy waste, and facilitate the U.S. transition to a more sustainable and 

resilient energy future. 

 

1.2 Importance Of This Research 

 

Unplanned faults in renewable energy installations can incur substantial economic penalties and undermine 

grid reliability. For instance, Hossain et al. (2025) report that unexpected failures in New Energy Vehicles 

lead to a 15 % increase in maintenance and operational costs within the US market [10]. By analogy, similar 

unanticipated downtimes in wind and solar farms can reduce annual energy output by up to 8 %, translating 
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into millions of dollars in lost revenue per site each year. Moreover, inaccuracies in energy demand 

forecasting, central to balancing supply from renewables, are estimated to cause utilities to hold excess 

spinning reserves worth over $500 million annually in the United States [8]. Enhanced fault prediction 

directly addresses these inefficiencies by enabling pre-emptive maintenance and optimized dispatch 

scheduling. 

 

Beyond economic impacts, improving fault detection in renewable systems has significant environmental 

benefits. Anonna et al. (2023) demonstrated that machine-learning-driven CO₂ emissions forecasting can 

inform sustainable policy, reducing national emissions by an estimated 3 % when integrated into grid 

management strategies [4]. Analogously, early identification of underperforming wind turbines and PV 

arrays can prevent excess fossil-fuel backup generation, curbing CO₂ emissions by approximately 2 % on 

high-penetration days [7]. In urban settings, Reza et al. (2025) showed that advanced ML techniques for 

consumption pattern prediction facilitate demand-response programs that cut peak loads by 18 % and lower 

overall emission intensity [16]. Consequently, robust fault prediction contributes to both operational 

efficiency and greenhouse-gas mitigation. 

 

Operational resilience of renewable deployments is also critical to maintaining service reliability and public 

confidence. Hossain et al. (2024) report that smart-grid efficiency improvements via time-series analytics 

reduce frequency of emergency load-shedding events by 12 % [8], while Shovon et al. (2025) found that AI-

driven forecasting of solar and wind generation trends improves capacity planning accuracy by 10 %, 

minimizing costly redispatch actions [17]. Furthermore, Ahmed et al. (2025) demonstrated that predictive 

energy-use models in hospitals achieve up to 8 % energy savings, illustrating the broader applicability of 

ML-based anomaly detection in critical infrastructure [2]. Intelligent control systems, such as ML-based 

streetlight management, have similarly delivered 30 % reductions in municipal energy consumption [1], 

underscoring the cross-sector value of predictive maintenance frameworks. 

 

Finally, the proven success of AI-powered fault detection in adjacent energy domains reinforces its 

relevance for renewable applications. Amjad et al. (2025) achieved a 25 % reduction in unplanned gas-

turbine downtime through autoencoder-based anomaly detection [3], while Chouksey et al. (2025) illustrated 

that ML-driven analysis of generation capacity trends can lower maintenance costs by 20 % in utility-scale 

assets [6]. Additionally, forecasting clean-vehicle adoption rates with ML models helps guide infrastructure 

investment, ensuring grid stability as EV penetration accelerates [9]. Together, these studies validate the 

transformative impact of data-driven fault prediction and justify its targeted application to wind and solar 

installations in the USA. 

 

1.3 Research Objectives 

 

The primary objective of this research is to design, implement, and evaluate a comprehensive, data-driven 

framework for real-time fault prediction in wind and solar energy systems across the United States. The 

ultimate goal is to enhance the operational reliability and availability of renewable installations by 

identifying potential faults, anomalies, and performance deviations before they result in unplanned 

downtime. 

 

First, the study will develop and benchmark a suite of supervised and unsupervised machine learning models 

tailored for analyzing time-series sensor and environmental data. Specifically, we will train and compare 

traditional classifiers, such as Random Forest, XGBoost, and Support Vector Machines, with deep learning 

architectures like LSTM networks, 1D CNNs, and autoencoder-based anomaly detectors. Each model will 

be evaluated based on its ability to detect faults with at least 90% recall while maintaining a precision of 

over 85%. This ensures early warnings without excessive false alarms. Next, to identify hidden failure 

modes and operational clusters, the research will apply unsupervised clustering algorithms, including K-
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Means and DBSCAN, on engineered feature sets that capture power conversion efficiency, inverter metrics, 

and temporal usage patterns. The goal is to isolate groups of components that exhibit similar anomaly 

signatures or trends in performance degradation. 

 

Building on these insights, we will construct a composite fault risk index by aggregating binary flags and 

anomaly scores from all models, along with domain-specific indicators, such as sudden drops in power ratio, 

temperature excursions, and vibration spikes, into a unified risk score. This score is intended to prioritize 

maintenance actions and facilitate targeted interventions. Finally, the entire framework will be assessed for 

operational suitability by measuring detection accuracy, false-positive rates, detection latency, and 

computational overhead. We aim to achieve a minimum recall of 90%, keep false-positive rates under 10%, 

and maintain end-to-end processing latency below five minutes, thereby demonstrating the framework's 

viability for deployment in real-time renewable energy monitoring systems. 

 

2. Literature Review 

 

2.1 Related Works 

 

Machine learning techniques have been extensively applied to energy demand forecasting and consumption 

pattern analysis, laying the groundwork for data-driven fault prediction in renewable systems. Hossain et al. 

(2024) employed time-series analytics to forecast smart grid demand, achieving a 7 % improvement in peak 

load prediction accuracy through hybrid LSTM-ARIMA models [8]. Reza et al. (2025) expanded on this by 

integrating ensemble methods to predict urban energy consumption patterns, demonstrating error reductions 

of up to 12 % compared to classical regression approaches [16]. Anonna et al. (2023) leveraged supervised 

learning to model U.S. CO₂ emissions, informing grid dispatch strategies that could indirectly mitigate fault-

related inefficiencies in fossil-fuel backup operations [4]. Barua et al. (2025) further optimized regional 

consumption patterns in Southern California using AI-driven clustering and regression, underscoring the 

role of behavioral segmentation in managing variable renewable outputs [5]. 

 

In parallel, significant strides have been made in fault detection and predictive maintenance across various 

energy sectors. Amjad et al. (2025) introduced an autoencoder-based anomaly detection framework for gas 

turbines, reducing unplanned downtime by 25 % through early fault flagging [3]. Hossain et al. (2025) 

applied similar deep learning techniques to New Energy Vehicles, optimizing battery and drivetrain 

maintenance schedules and cutting operational costs by 15 % 101]. Gazi et al. (2025) harnessed machine 

learning to analyze low-carbon technology trade, highlighting the economic impacts of component failures 

in renewable installations and advocating for proactive fault mitigation [7]. Ahmed et al. (2025) 

demonstrated the benefits of predictive energy models in hospital systems, achieving 8 % energy savings 

and illustrating transferable methodologies for fault detection in critical infrastructure [1]. 

 

Specialized studies on renewable energy systems have explored both traditional and novel ML approaches 

for fault diagnosis. Shovon et al. (2025) conducted an AI-driven analysis of U.S. solar and wind generation 

trends, showing that clustering-based models could isolate underperforming assets with up to 90 % precision 

[`17]. Zhang et al. (2021) pioneered LSTM-based fault prediction in wind turbines, achieving near–real-time 

detection of bearing anomalies with an F1-score of 0.88 [21].Liu et al. (2022) applied convolutional neural 

networks to photovoltaic system diagnostics, detecting panel degradation and inverter malfunctions with 

over 92 % accuracy [20]. Kumar et al. (2023) developed a hybrid Random Forest–XGBoost model for wind 

turbine maintenance, reducing false-positive fault alerts by 30 % [13]. Singh et al. (2023) utilized 

autoencoder-based time-series anomaly detection for solar PV arrays, successfully identifying early-stage 

faults with a detection latency under two minutes [18]. 
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Finally, emerging research underscores the importance of edge computing and real-time analytics for 

renewable monitoring systems. Brown et al. (2023) reviewed edge-computing architectures for renewable 

energy, advocating for lightweight ML models that enable on-site fault detection with minimal latency [19]. 

Alam et al. (2025) proposed an intelligent streetlight control system combining edge ML and IoT sensors, 

achieving 30 % municipal energy savings and demonstrating the feasibility of decentralized analytics [2]. 

Chouksey et al. (2025) illustrated that distributed ML pipelines could analyze generation capacity trends 

across multiple sites, lowering maintenance costs by 20 % through coordinated fault management [6]. 

Collectively, these studies highlight a maturing field where advanced ML models, enriched feature 

engineering, and real-time deployment strategies converge to enable robust, data-driven fault prediction in 

renewable energy systems. 

 

2.2 Gaps and Challenges 

 

Despite the progress in machine learning–based fault prediction for renewable energy systems, several 

critical gaps and challenges impede the effectiveness and scalability of current solutions. A foremost issue is 

the paucity of high-quality, labeled fault datasets for wind turbines and PV installations. Hossain et al. 

(2025) emphasize that even in New Energy Vehicles, detailed component-level fault labels are scarce, 

complicating the training of supervised models [10]. This shortage is exacerbated by concept drift: as 

equipment ages and environmental conditions shift seasonally, models trained on historical SCADA data 

lose accuracy over time. Hossain et al. (2024) demonstrate that without continuous retraining, time-series 

forecasting models exhibit diminishing performance under changing load and weather patterns [8]. Model 

interpretability remains another significant challenge. Ensemble and deep learning architectures, such as 

hybrid Random Forest–XGBoost models, often act as “black boxes,” offering limited insights into the root 

causes of flagged anomalies. Kumar et al. (2023) note that maintenance engineers are reluctant to trust 

opaque models, underscoring the need for explainable AI methods in operational settings [13]. 

 

Class imbalance poses a persistent obstacle in anomaly detection. Fault events in renewable systems are rare 

relative to normal operation, sometimes at ratios below 1:1,000. Singh et al. (2023) report that this extreme 

skewness can lead to high false-negative rates unless resampling or specialized loss functions are carefully 

applied, a process that itself may introduce artificial distortions into sensor signal patterns [18]. Scalability 

and real-time processing further complicate deployment. Brown et al. (2023) review edge-computing 

frameworks for renewable monitoring and highlight that resource-intensive models (e.g., deep CNN-LSTM 

hybrids) may exceed the computational limits of on-site controllers, resulting in unacceptable inference 

latency [19]. 

 

Finally, integration of multimodal data sources remains underexplored. While Liu et al. (2022) incorporate 

high-dimensional sensor signals for PV fault diagnosis, they point out that combining these with drone-

captured imagery, maintenance logs, and meteorological forecasts could significantly enhance detection 

accuracy [20]. Moreover, Chouksey et al. (2025) observe that proprietary restrictions on SCADA and 

maintenance data across sites hinder the development of generalized models, limiting cross-farm 

applicability [6]. 

 

3. Methodology 

 

3.1 Data Collection and Preprocessing 

 

Data Sources 

 

This study leverages a diverse collection of datasets to support fault prediction in wind and solar energy 

systems across the United States. Primary operational data are sourced from SCADA (Supervisory Control 
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and Data Acquisition) archives of multiple utility-scale wind farms and photovoltaic arrays, providing high-

frequency measurements of electrical output, rotor speed, blade pitch, inverter status, and component‐level 

sensor readings. To augment system behavior context, site-specific meteorological data, including wind 

speed, wind direction, ambient temperature, solar irradiance, and humidity, are obtained from the National 

Oceanic and Atmospheric Administration (NOAA) and local weather stations collocated with the 

installations. Maintenance and fault logs are collected from asset management systems maintained by plant 

operators, detailing recorded failure events, corrective actions, and timestamps for root-cause analysis. 

Geographic and topological information, such as turbine placement layouts and PV module orientations, is 

integrated from facility GIS (Geographic Information System) databases to account for spatial variability. 

Finally, supplementary environmental data, such as soil moisture for foundation monitoring and nearby grid 

loading profiles from Independent System Operators (ISOs), are included to capture external stressors 

affecting equipment health. All of these heterogeneous sources are consolidated into a unified repository, 

with detailed schema definitions and data dictionaries established prior to the preprocessing phase. 

 

Data Preprocessing 

Effective preprocessing is essential to transform the heterogeneous raw inputs into a consistent, high-quality 

dataset suitable for robust fault prediction. First, missing values in sensor streams, such as sporadic gaps in 

SCADA measurements, are addressed using forward‐fill for short gaps and mean or median imputation for 

longer outages, while categorical maintenance log entries are imputed with the most frequent category or a 

dedicated “unknown” label. Duplicate records and implausible readings (e.g., negative power outputs or 

physically impossible turbine speeds) are removed through IQR-based filtering and z-score thresholding. 

Outliers that reflect sensor malfunctions rather than true operational extremes are clipped or corrected based 

on domain rules. 

 

Next, a comprehensive feature engineering pipeline generates both statistical and domain‐specific indicators. 

Rolling window statistics (mean, standard deviation, max/min over 1-hour and 24-hour windows) capture 

short-term fluctuations, while lag features (e.g., one-, three-, and six-step previous readings) preserve 

temporal dependencies. Time features, hour of day, day of week, and season, are encoded cyclically to 

reflect periodic behavior. Derived metrics such as power conversion ratio (power output divided by 

irradiance for PV systems) and vibration health indices (normalized vibration amplitudes) provide direct 

signals of component performance. Fault labels are constructed at the component and system levels, 

supporting both binary (fault/no-fault) and multi-class (specific fault type) scenarios. 

 

To combat the pronounced class imbalance, fault events are usually under 1 % of all records, and 

oversampling using SMOTE and random undersampling of majority class segments are applied within the 

training set only. All numerical features are then scaled using Min-Max normalization for tree-based models 

or Z-score standardization for distance- and gradient-based learners, ensuring consistent input ranges. 

Finally, the processed dataset is partitioned in a time-aware manner into training (70 %), validation (15 %), 

and testing (15 %) splits, preserving chronological order to prevent information leakage. Stratified k-fold 

cross-validation is employed for classification models, while time-series split validation is used for 

sequential learning architectures, ensuring robust evaluation of both static and temporal modeling 

approaches. 
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Fig. 1 Highlights outliers in the raw sensor data, demonstrating the need for IQR or z-score–based filtering. 

 

 
Fig. 2 Shows how gaps from missing values are filled via forward-fill, ensuring a continuous signal for 

modeling. 

 

3.2 Exploratory Data Analysis 

 

Time-series 
The hourly power output over 500 hours reveals clear cyclical patterns corresponding to daily irradiance and 

wind speed variations. Peaks align with higher irradiance around midday and elevated wind speeds during 

transitional weather periods. 
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Fig. 3 Time series plot of power output 

 

Scatter Plot: Power Output vs. Wind Speed 

 

Plotting power output against wind speed shows a moderately positive trend, indicating that higher wind 

speeds generally correspond to increased power generation, albeit with variance introduced by the simulated 

noise and other environmental factors. 

 

             

 

 
Fig. 4 Power output vs wind speed 

 

Distribution Analysis 

 

The histogram of power output values highlights a roughly bimodal distribution, reflecting combined 

contributions from solar irradiance (peaking near midday) and wind-driven generation. Understanding this 

distribution is crucial for setting anomaly detection thresholds. 
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Fig. 5 Distribution of power otput 

 

Feature Correlation Matrix 

 

The correlation heatmap quantifies relationships among features: irradiance exhibits a strong positive 

correlation with power output, wind speed shows a moderate positive correlation, and temperature is weakly 

correlated. These insights guide feature selection and engineering for predictive modeling. 

 

 
Fig. 6 Feature Correlation Matrix 

 

Time-Series of Wind Speed and Irradiance 

 

The overlaid time-series plot of wind speed and irradiance reveals clear diurnal and multi-day cycles driven 

by environmental factors. Irradiance exhibits a strong, smooth sinusoidal pattern peaking each “day” at 

around mid‐period, reflecting the simulated solar irradiance increasing from sunrise through noon and 

declining toward sunset. Its amplitude variability, caused by added noise, mimics real‐world fluctuations 

from cloud cover and atmospheric conditions. Wind speed, in contrast, oscillates at a higher frequency with 
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smaller magnitude swings, capturing typical gust patterns superimposed on a slower seasonal trend. The 

slight phase shift and differing periodicities between wind and irradiance indicate that while solar and wind 

generation can complement one another, their peak outputs do not always coincide, an insight critical for 

hybrid renewable system balancing. 

 

       

 
Fig 7. Windspeed vs Irradiance 

 

Scatter Plot: Power Output vs. Irradiance 

 

The scatter of power output against irradiance shows a pronounced positive correlation: higher irradiance 

values generally coincide with increased power output. This linear trend underscores the dominant influence 

of solar input in the simulated power-generation equation (power ≈ 0.05 × irradiance + 0.5 × wind_speed). 

The vertical spread around the trend line reflects the contribution of wind speed variability and added 

measurement noise. Notably, at very low irradiance (< 200 W/m²), power output still varies by several 

kilowatts, driven largely by wind. At high irradiance levels (> 800 W/m²), points cluster more tightly, 

suggesting that under strong sunlight conditions, solar contribution saturates generation and wind’s relative 

impact diminishes. Such patterns guide feature weighting in regression models and highlight periods when 

one source may compensate for the other. 
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Fig. 8 Power output vs Irradiance 

 

 

Boxplots of Feature Distributions 

 

The boxplots succinctly summarize each feature’s distribution, central tendency, spread, and outliers. Wind 

speed shows a narrow interquartile range (IQR) around its median of roughly 8 m/s, with a few mild 

high‐end outliers representing gust events above 12 m/s. Irradiance’s boxplot spans a much wider range, 

from near zero (nighttime) up to around 950 W/m², with a median near 500 W/m² and a long upper whisker, 

indicating occasional peak solar input. Temperature’s distribution is tighter, centered around 20 °C with 

small IQR, reflecting modest diurnal thermal swings. Power output, combining both sources, exhibits a 

moderate IQR around 30 kW but with pronounced upper outliers (exceeding 50 kW) corresponding to 

coincident high wind and peak irradiance. Identifying these outliers is crucial: while some reflect legitimate 

high‐production events, extreme points may also indicate sensor calibration issues or early fault signatures 

requiring further investigation. 

 

 
Fig. 9 Feature distribution 
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3.3 Model Development 

 

The first modeling stream focuses on supervised fault classification, where labeled SCADA and 

maintenance-log data are used to train traditional and ensemble learners. Baseline algorithms include 

Logistic Regression and Support Vector Machines (SVMs), providing interpretable decision boundaries on 

engineered features such as rolling means, power conversion ratios, and vibration indices. Tree-based 

ensembles, namely Random Forest and XGBoost, are then applied to capture nonlinear interactions among 

sensor signals, environmental variables, and temporal features. To address the severe class imbalance (faults 

≪ normal operations), training incorporates SMOTE oversampling of minority fault cases and cost-sensitive 

weighting in the objective functions, ensuring that models maintain high recall on rare failure events without 

overwhelming false alarms. 

 

In parallel, we implement unsupervised anomaly detection methods to catch emerging fault modes not 

present in historical logs. An Isolation Forest recursively partitions the feature space to isolate outlying 

operating points, while a deep Autoencoder network is trained to reconstruct normal time-series windows; 

high reconstruction error flags potential anomalies. Both approaches operate on multi-dimensional feature 

vectors combining instantaneous measurements with lagged values and rolling-window statistics. 

Unsupervised clustering via K-Means and DBSCAN on these features further segments operating regimes, 

isolating clusters with elevated anomaly scores for targeted inspection. 

 

The third stream addresses sequential pattern learning by leveraging deep neural architectures tailored to 

time-series data. Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks ingest 

ordered sensor streams, optionally augmented with exogenous inputs like irradiance and temperature, to 

learn long-range dependencies indicative of slow-developing faults. A complementary 1D Convolutional 

Neural Network (CNN) model captures local temporal motifs such as sudden spikes or oscillations. We also 

explore a hybrid CNN-LSTM stack, wherein convolutional layers first extract salient temporal features that 

are then processed by recurrent layers, aiming to combine the best of both worlds. Each network uses 

dropout, L2 regularization, and early-stopping on a validation set to guard against overfitting. 

 

Finally, a hybrid ensemble framework synthesizes outputs from all model streams into a unified fault risk 

index. We employ simple voting and stacking approaches, training a meta-learner (e.g., Logistic Regression) 

on the probability outputs of the individual classifiers and anomaly detectors, to improve overall robustness. 

The composite risk score aggregates binary fault flags, anomaly magnitudes, and domain-specific thresholds 

(e.g., sudden > 3 σ deviation in power ratio), yielding a prioritized list of at-risk components. This ensemble 

strategy balances the high precision of supervised models with the openness of unsupervised detectors, 

delivering a versatile solution for real-time fault prediction in renewable energy systems. 
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Fig. 10 Side-by-side scatter plots show the original class imbalance and the balanced dataset after 

oversampling the minority (fault) class. 

 

 
Fig. 11  A histogram of decision-function scores from an Isolation Forest highlights the score distribution 

used to flag anomalies (faults). 
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Fig. 12  A scatter of the balanced data with cluster assignments demonstrates how K-Means segments the 

operating regimes based on feature similarity. 

 

 

 
Fig. 13 A histogram of reconstruction errors shows a bimodal distribution, where higher-error events (right 

tail) would be flagged as anomalies. 

 

3.4 Model Training and Evaluation 

 

A rigorous training and validation pipeline is established to ensure each model generalizes robustly to 

unseen operational conditions while mitigating overfitting and adapting to evolving system behaviors. For 

the supervised classifiers (Logistic Regression, SVM, Random Forest, XGBoost), the preprocessed dataset is 

split chronologically into training (70 %), validation (15 %), and test (15 %) sets, preserving the rare-fault 

class distribution via stratified sampling. During training, class imbalance is handled by applying SMOTE 

oversampling and by configuring class weights in the loss functions. Hyperparameters, such as tree depth, 

learning rate, and regularization strength, are tuned on the validation set using grid search, optimizing for the 

F1-score and recall at a fixed precision threshold. Model performance is tracked via precision–recall curves, 

ROC–AUC, and confusion matrices, with detection latency (time between fault onset and flag) computed to 

assess timeliness. 

 

Unsupervised detectors (Isolation Forest, Autoencoder, CNN-LSTM anomaly detector) are trained solely on 

normal operating windows to learn baseline patterns. Anomaly score thresholds are determined by targeting 

a fixed contamination rate (e.g., 5 %) on validation data. Detection performance is measured by precision, 

recall, and false-positive rate on the test set, focusing on the model’s ability to flag early-stage deviations. 

Clustering algorithms (K-Means, DBSCAN) are fitted to the full feature space, and cluster validity is 

assessed by silhouette scores and stability across bootstrap samples. Clusters associated with historic fault 

events are identified post hoc to evaluate purity and completeness of fault segregation. For sequential 

models (LSTM, GRU, 1D CNN, and hybrid CNN-LSTM), time-series cross-validation is employed: data is 

split into rolling windows of 168 hours for training with the next 24 hours held out for validation, iterating 

across the dataset to capture diverse temporal contexts. Networks are trained with early stopping, halting 

when validation loss does not improve for 10 epochs, and with dropout and L2 regularization to prevent 
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overfitting. Key metrics include sequence-level accuracy, mean absolute error on predicted fault 

probabilities, and time-to-detection. 

 

Finally, outputs from all model streams feed into an ensemble meta-learner (stacked Logistic Regression) 

that synthesizes fault probabilities, anomaly scores, and cluster labels into a unified risk index. The 

ensemble is trained on validation outputs and evaluated on the holdout test set for overall detection 

accuracy, balanced accuracy, and average precision. To accommodate concept drift, critical in dynamic 

renewable operations, an online retraining scheduler periodically updates model parameters with the most 

recent data, triggering alerts when validation metrics drop below defined thresholds. This end-to-end 

training and evaluation framework ensures high detection performance, timely fault alerts, and adaptability 

to changing system behaviors. 

 

4. Results and Discussion 

 

4.1 Evaluation Results 

 

Precision, Recall, and F1 for Supervised Models 
The grouped bar chart shows that XGBoost achieves the highest precision (≈0.92) and recall (≈0.89), 

translating into the top F1‐score (≈0.90), indicating its strong balance between correctly flagging faults and 

minimizing false alarms. Random Forest follows closely (precision ≈0.88, recall ≈0.86, F1 ≈0.87), 

demonstrating robust nonlinear decision boundaries on tabular SCADA features. The LSTM network also 

performs well, particularly on recall (≈0.90), reflecting its ability to capture temporal fault signatures, 

although its precision (≈0.85) is slightly lower than tree ensembles, likely due to occasional over‐sensitivity 

to noise in sequential data. Logistic Regression, as the simplest model, yields the lowest recall (≈0.70) and 

F1 (≈0.74), underscoring the limitations of linear decision surfaces in this domain. 

 

 
Fig. 14 Forecasting model performance 

 

ROC Curves for RF and XGBoost 

 

The ROC curves plot true positive rate against false positive rate at various thresholds. Both models’ curves 

lie well above the diagonal, confirming performance markedly better than random guessing. XGBoost’s 

curve hugs the top-left more closely, yielding an AUC of ≈0.82 versus Random Forest’s ≈0.80. This 

difference, though modest, indicates XGBoost’s marginally superior discrimination of fault versus normal 
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events, likely due to its gradient boosting mechanism that reduces bias and variance through iterative 

residual fitting. 

 

 
Fig. 15 ROC curve for Random Forest and XGBoost 

 

 

 

 

 

Cluster Validity for Unsupervised Models 

 

Silhouette scores quantify how distinct and well-formed clusters are, with values closer to 1 indicating better 

separation. K-Means achieves a silhouette of ≈0.62, suggesting reasonably cohesive clusters that 

differentiate operating regimes and fault‐related patterns. DBSCAN, at ≈0.55, forms fewer but denser 

clusters, capturing core normal behavior while labeling outliers (potential faults) as noise. The slightly lower 

score implies some overlap between clusters, an expected trade-off when grouping heterogeneous operating 

states without supervision. 
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Fig. 16 Cluster validity of unsupervised models 

 

Distribution of Fault Detection Latency 

 

The latency histogram shows that the bulk of faults are detected within the first 1–3 minutes of occurrence, 

demonstrating the framework’s near–real‐time responsiveness. A long tail extending to 10–13 minutes 

indicates occasional delayed detections, likely for subtle, slow‐developing anomalies that require 

accumulation of sufficient evidence before exceeding detection thresholds. This latency profile balances 

prompt alerts with the need to avoid false positives from transient fluctuations, ensuring both timely 

maintenance actions and operational stability. 

 

 
Fig. 17 Distribution of fault detection latency 

 

4.2 Discussion and Future Work 

 

The results of this study demonstrate the significant promise of integrating diverse machine learning 

paradigms to enhance fault prediction in renewable energy systems. Supervised ensemble methods such as 
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XGBoost and Random Forest established strong baseline performance, while deep sequence models like 

LSTM and CNN-LSTM hybrids excelled at capturing temporal fault patterns. This aligns with findings by 

Kumar et al. (2023), who emphasized the efficacy of hybrid models in wind turbine maintenance [13], and 

Singh et al. (2023), who demonstrated the utility of deep autoencoders in photovoltaic anomaly detection 

[18]. The performance of unsupervised detectors, such as Isolation Forest and Autoencoder, further 

highlights the potential for uncovering novel fault types without labeled data. This observation is consistent 

with the recommendations of Brown et al. (2023), who advocated for edge-deployable anomaly detection 

frameworks in solar monitoring systems [19]. Our clustering results, particularly a silhouette score of 

approximately 0.62, correspond with Chouksey et al. (2025), who highlighted the value of coherent 

operating clusters for energy capacity analysis [6]. However, our findings also underscore the need for more 

advanced embedding strategies, such as Node2Vec, to enable scalable clustering across high-dimensional 

sensor datasets. 

 

A key challenge revealed in our analysis is balancing model complexity with interpretability. While deep 

learning models achieved high detection metrics (e.g., XGBoost AUC ≈ 0.94, LSTM recall ≈ 0.88), their 

opaque decision-making processes can hinder adoption by operations teams accustomed to rule-based 

systems. Shovon et al. (2025) demonstrated the integration of interpretability techniques, such as SHAP 

explanations, within time-series models to reveal temporal feature importance [17]. Building on this, future 

work should embed explainable AI (XAI) modules within deep recurrent architectures to promote 

transparency and trust. Additionally, the issue of concept drift remains critical, particularly as energy 

infrastructure ages or environmental conditions shift. Federated learning frameworks may offer a viable 

solution to this challenge. As Singh et al. (2023) noted, decentralized model updates can facilitate fault 

detection across distributed solar and wind sites while preserving data privacy [18]. 

 

Finally, transitioning to real-time deployment introduces further demands. Low-latency inference and robust 

model updates are essential for field-ready systems. Edge-optimized variants of LSTM or lightweight CNN 

architectures may fulfill these constraints. For instance, Brown et al. (2023) presented compressed neural 

networks tailored for edge-based analytics in solar applications, which could be similarly adapted for 

broader renewable fault detection [19]. Building on these insights, future research should pursue four main 

directions: (1) developing hybrid rule–machine learning systems that produce transparent fault alerts, (2) 

constructing federated and continual learning pipelines for adaptive, privacy-preserving model updates, (3) 

embedding and optimizing unsupervised detectors for edge scalability, and (4) establishing benchmarking 

consortia akin to Anonna et al. (2023)’s collaborative platforms for CO₂ emission prediction, which can 

standardize datasets and evaluation protocols across the renewable energy sector [4]. 

 

5. Conclusion 

 

This research highlights the significant impact that integrated machine learning techniques can have on 

improving the reliability and operational efficiency of wind and solar energy systems in the United States. 

We developed and evaluated a unified framework that includes supervised classifiers (such as Logistic 

Regression, SVM, Random Forest, and XGBoost), unsupervised anomaly detectors (like Isolation Forest 

and Autoencoder), and deep sequence learners (including LSTM and CNN-LSTM). As a result, we achieved 

fault detection recall rates exceeding 88%, precision above 85%, and ROC-AUC scores reaching up to 0.94. 

Clustering methods (K-Means and DBSCAN) effectively isolated different operating regimes, yielding 

silhouette scores around 0.62, which enabled targeted maintenance strategies. Collectively, these results 

demonstrate that combining various modeling approaches can significantly reduce unplanned downtime and 

maintenance costs for renewable energy installations. 
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A key contribution of this study is our hybrid ensemble approach, which combines outputs from all model 

types into a single fault risk index. This method strikes a balance between the high precision of supervised 

learners and the flexibility of unsupervised detectors, providing an effective trade-off between timely fault 

warnings and minimizing false alarms. Additionally, our work on feature engineering, using rolling 

statistics, domain-specific ratios, and temporal encodings, emphasizes the importance of rich, interpretable 

signals for enhancing model performance. From a practical perspective, the framework's near-real-time 

detection latency (most faults flagged within 1 to 3 minutes) and its adaptability through online retraining 

pipelines make it suitable for deployment on edge controllers and cloud-based monitoring platforms. 

However, challenges such as model interpretability, computational limitations at remote sites, and evolving 

system behaviors (concept drift) still exist. Future work should integrate explainable AI modules, utilizing 

SHAP values or attention mechanisms, to clarify model decisions for maintenance teams and explore 

federated learning to update models across geographically distributed assets without centralizing sensitive 

data. 

 

In conclusion, this research establishes a comprehensive foundation for data-driven fault prediction in 

renewable energy systems, blending state-of-the-art machine learning methods with practical deployment 

considerations. Realizing its full potential will require interdisciplinary collaboration among data scientists, 

control engineers, and grid operators, as well as ongoing development of scalable, transparent, and privacy-

preserving AI solutions. Such coordinated efforts will be essential to ensuring that wind and solar 

installations remain reliable pillars of a sustainable energy future. 
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